
PCBoard Programming Language

Reference Guide

(Extracted from Power PPL 2.0 HLP File)

Thanks to By Francis Gastellu, developer os Power PPL, that included the entire reference in Power PPL HLP

PPL Reference Index

Compiler Options

There are two options for the compiler :

1 - Array Dimension Checking:

This option allow the compiler to check for mistakes when using the statement
REDIM. for example :

 DIM TABLE(5,5,5)
 ...
 REDIM TABLE,10,10

This will generate an error unless Array Dimension Checking has been disabled.

2 - User Variable Generation

This allow the PPE to generate the user variables when starting... disable this option if
you don't want to have the work done... Usually, there is no need to change anything
here... both options may be checked unless you have reasons to changed that.

ASCII Table

PCBoard Programming Language Reference Index

 PPL Source Syntax
 Data Types
 Constants
 Predifined Variables
 Predifined Constants
 Message Header Constants
 Expression Operators
 Accounting features
 DBase III features
 @Xnn Color codes
 Compiler Options
 Compiler Directives

─── Functions & Statements ───

Functions & Statements – A
Functions & Statements - B
Functions & Statements – C
Functions & Statements - D
Functions & Statements – E
Functions & Statements – F
Functions & Statements – G
Functions & Statements - H
Functions & Statements - I
Functions & Statements - J
Functions & Statements - K
Functions & Statements - L
Functions & Statements - M
Functions & Statements - N
Functions & Statements - O
Functions & Statements - P
Functions & Statements - Q
Functions & Statements - R
Functions & Statements - S
Functions & Statements - T
Functions & Statements - U
Functions & Statements - V
Functions & Statements - W
Functions & Statements - X
Functions & Statements - Y

Functions & Statements - A

 Abort
 Abs
 Account
 ActMsgNum
 AdjBytes
 AdjDBytes
 AdjTBytes
 AdjTFiles
 AdjTime
 Alias
 And
 AnsiOn
 AnsiPos
 Append
 Asc

Function & Statements - B
 B2w
 Backup
 BitClear
 BitSet
 Blt
 Break
 Broadcast
 Bye

Function & Statements - C
 Call
 CallID
 CallNum
 Carrier
 CcType
 CdCheckOff
 CdCheckOn
 CdOn
 Chat
 ChatStat
 Chr
 CloseCap
 ClrEol
 Cls
 Color
 ConfAlias
 ConfExp
 ConfFlag
 ConfMw
 ConfReg
 ConfSel
 ConfSys
 ConfUnFlag

 Continue
 Copy
 Crc32
 CurColor
 CurConf
 CurSec
 CurUser

Function & Statements - D
 Date
 Day
 DbgLevel
 Dec
 Declare
 DefAns
 DefColor
 Delay
 Delete
 DelUser
 Dir
 DispFile
 DispStr
 DispText
 DNext
 DoIntr
 Dow
 Download
 DriveSpace
 DtrOff
 DtrOn

Function & Statements - E
 End
 ErrorCorrect
 EvtTimeAdj
 Exist

Function & Statements - F
 FAppend
 FClose
 FCloseAll
 FCreate
 FDefIn
 FDefOut
 FDGet
 FDPut
 FDPutLn
 FDPutPad
 FDRead
 FDWrite
 Ferr
 FFlush

 FGet
 FileInf
 Flag
 FlagCnt
 FmtCC
 FmtReal
 FNext
 FOpen
 ForNext
 Forward
 FPut
 FPutLn
 FPutPad
 FRead
 FReAltUser
 FreshLine
 FRewind
 FSeek
 Function
 FWrite

Function & Statements - G
 GetAltUser
 GetEnv
 GetToken
 GetUser
 GetX
 GetY
 Go
 Goodbye
 GoSub
 GoTo
 GrafMode

Function & Statements - H
 Hangup
 HelpPath
 HiConfNum
 HiMsgNum
 Hour

Function & Statements - I
 I2s
 IfThen
 InBytes
 Inc
 Inkey
 Input
 InputCC
 InputDate
 InputInt
 InputMoney

 InputStr
 InputText
 InputTime
 InputYN
 Instr
 IsBitSet
 IsNonStop

Function & Statements - J
 Join

Function & Statements - K
 KbdBufSize
 KbdChkOff
 KbdChkOn
 KbdFile
 KbdFileUsed
 KbdFlush
 KbdString
 KbdStuff
 KeyFlush
 KInkey

Function & Statements - L
 Lang
 LangExt
 LastAns
 LastIn
 Left
 Len
 Let
 Log
 LoggedOn
 LoMsgNum
 Loop
 Lower
 Lprinted
 Ltrim

Function & Statements - M
 Mask_Alnum
 Mask_Alpha
 Mask_Ascii
 Mask_File
 Mask_Num
 Mask_Path
 Mask_Pwd
 MaxNode
 MdmFlush
 MegaNum
 Message
 MGetByte

 Mid
 Min
 MInkey
 MinLeft
 MinOn
 Mixed
 MkAddr
 MkDate
 Modem
 Month
 More
 MouseReg
 MPrint
 MPrintLn
 MsgToFile

Function & Statements - N
 NewLine
 NewLines
 NoChar
 Not

Function & Statements - O
 OnLocal
 OpenCap
 Operators
 OpText
 Or
 OutBytes

Function & Statements - P
 PageOff
 PageOn
 PageStat
 PCBAccount
 PcbAccStat
 PcbDat
 PcbMac
 PcbNode
 PeekB
 PeekDW
 PeekW
 PokeB
 PokeDW
 PokeW
 Pop
 PPEName
 PPEPath
 PPLBufSize
 PRFound
 Print
 PrintLn

 Procedure
 PromptStr
 Psa
 Push
 PutAltUser
 PutUser

Function & Statements - Q
 Quest
 Quit
 QwkLimits

Function & Statements - R
 Random
 RdUnet
 RdUsys
 ReadLine
 RecordUsage
 ReDim
 RegAh
 RegAl
 RegAx
 RegBh
 RegBl
 RegBx
 RegCf
 RegCh
 RegCl
 RegCx
 RegDh
 RegDi
 RegDl
 RegDs
 RegDx
 RegEs
 RegF
 RegSi
 Rename
 Replace
 ReplaceStr
 ResetDisp
 RestScrn
 Return
 Right
 Rtrim

Function & Statements - S
 S2i
 SaveScrn
 ScanMsgHdr
 ScrFile
 ScrText

 SearchFind
 SearchInit
 SearchStop
 Sec
 Select Case
 SendModem
 SetEnv
 SetLmr
 Shell
 ShowOff
 ShowOn
 ShowStat
 SlPath
 Sort
 Sound
 Space
 SPrint
 SPrintLn
 StackAbort
 StackErr
 StackLeft
 StartDisp
 Stop
 String
 Strip
 StripAtx
 StripStr
 Syntax
 SysopSec

Function & Statements - T
 TempPath
 Time
 TimeAP
 To
 ToDDate
 TokCount
 Tokenize
 TokenStr
 ToType
 TPACGet
 TPACPut
 TPACRead
 TPACWrite
 TPAGet
 TPAPut
 TPARead
 TPAWrite
 Trim

Function & Statements - U
 Un_City

 Un_Name
 Un_Oper
 Un_Stat
 Upper
 UserAlias
 U_Bdl
 U_BdlDay
 U_Bul
 U_Fdl
 U_Ful
 U_InConf
 U_LDate
 U_LDir
 U_Lmr
 U_Logons
 U_LTime
 U_MsgRd
 U_MsgWr
 U_Name
 U_PwdHist
 U_PwdLc
 U_PwdTc
 U_RecNum
 U_Stat
 U_TimeOn

Function & Statements - V
 ValCC
 ValDate
 ValTime
 VarAddr
 VarOff
 VarSeg
 Ver

Function & Statements - W
 Wait
 WaitFor
 While
 WrUnet
 WrUsys
 WrUsysDoor

Function & Statements - X
 Xor

Function & Statements - Y
 Year
 YesChar

PPL SOURCE SYNTAX

Each line of a PPL source file may contain none, one, some or all of the following
sections:

[KEYWORD][EXPR|VAR][,EXPR|VAR][;|'][COMMENT TEXT]

KEYWORD - A PPL statement used to accomplish some task.
EXPR - A PPL expression which may contain VARs, CONSTs, and/or FUNCs.
VAR - A PPL variable with optional array subscript.
CONST - A PPL constant.
FUNC - A PPL function that returns a value.
; - Used to start a comment. Ignored by the compiler.
' - Used to start a comment. Ignored by the compiler.
* - Used to start a comment if first character of the line.
COMMENT - Comment text following the ; or '. Ignored by the compiler.

If a line is blank or contains only a comment, it is skipped. if it contains a KEYWORD,
that line is compiled into a tokenized format. If it doesn't contain a KEYWORD but
some argument, it is assumed to be an assignement statement (LET).
A double quote ("") may be embedded within a string constant to tell the compiler
that a single literal quote is desired In other words, "THIS""IS""A""TEST" would
evaluate to THIS"IS"A"TEST after the leading and trailing quotes are removed and the
double quotes were folded to single quotes.
Labels and variable names may now include the following characters in addition to A-
Z, 0-9, and the _ (underscore) character: $ (dollar sign), @ (commercial at), #
(pound sign), ¢ (cents), £ (british pound), ¥ (japanese yen)
A \ (backslash) character as the last character on a line (before any comments) will
now allow continuing a logical line from one to the next physical line
A : (colon) character may be used to separate multiple logical lines on a single
physical line

DATA TYPES

 SYNTAX

TYPE var[(dim[,dim[,dim]])][,var...]

PPL utilizes the following data types:

 BOOLEAN

unsigned character (1 byte) 0 = FALSE, non-0 = TRUE

 DATE

unsigned integer (2 bytes) PCBoard julian date (count of days since 1/1/1900)

 DDATE

Signed long integer for julian date. DDATE is for use with DBase date fields. It holds a
long integer for julian dates. When coerced to string type it is in the format
CCYYMMDD or 19940527

 INTEGER / SDWORD / LONG

signed long integer (4 bytes) Range: -2,147,483,648 -> +2,147,483,647

 MONEY

signed long integer (4 bytes) Range: -$21,474,836.48 -> +$21,474,836.47

 STRING

far character pointer (4 bytes) NULL is an empty string non-NULL points to a string of
some length less than or equal to 256

 TIME

signed long integer (4 bytes) Count of seconds since midnight

 BIGSTR

Allows up to 2048 characters per big string (up from 256 for STRING variables) May
include CHR(0) characters in the middle of the big string (unlike STRING variables
which may not)

 EDATE

Julian date in earth date format Deals with dates formatted YYMM.DD Range: Same
as DATE

 REAL / FLOAT

4-byte floating point number Range: +/-3.4E-38 - +/-3.4E+38 (7-digit precision)

 DREAL / DOUBLE

8-byte floating point number Range: +/-1.7E-308 - +/-1.7E+308 (15-digit precision)

 UNSIGNED / DWORD / UDWORD

4-byte unsigned integer Range: 0 - 4,294,967,295

 BYTE / UBYTE

1-byte unsigned integer Range: 0 - 255

 WORD / UWORD

2-byte unsigned integer Range: 0 - 65,535

 SBYTE / SHORT

1-byte signed integer Range: -128 - 127

 SWORD / INT

2-byte signed integer Range: -32,768 - 32,767

 NOTES
 ─────

Any type may be assigned to any other type. This is the simplest way to accomplish
type conversion. BOOLEAN, DATE, INTEGER, MONEY and TIME are all integer types
and may be assigned to each other. Assignment from a larger data type to a smaller
data type automatically converts the data to a format suitable for the smaller data
type. Conversion to and from STRINGs is dependent on the other data type. DATEs
are imported/exported as "MM-DD-YY". TIMEs are imported/exported as "HH:MM:SS".
MONEYs are imported/exported as "#.##" without embedded dollar signs or commas,
and using as many characters as needed to the left of the decimal point. All variables
must be declared before use.

CONSTANTS

PPL allows user defined constants in the following formats:

 $#.##

A MONEY constant (dollar sign followed by optional dollars followed by decimal point
followed by cents; # = 0-9)

 #h

An INTEGER hexadecimal constant (# = 0-9 & A-F)

 #d

An INTEGER decimal constant (# = 0-9)

 #o

An INTEGER octal constant (# = 0-7)

 #b

An INTEGER binary constant (# = 0-1)

 #

An INTEGER constant (# = 0-9)

 "X"

A STRING constant (X = any displayable text)

 @X##

An INTEGER @X constant (# = 0-9 & A-F)

PREDEFINED CONSTANTS

PPL predefines the following constants:

 AUTO = 2000h

Parameter passed to INPUTSTR and PROMPTSTR statements (automatically press
enter after 10 seconds of no user input)

 BELL = 800h

Parameter passed to DISPTEXT statement (sound a bell when prompt displayed)

 CRC_FILE - CRC_STR

These constants were added to avoid confusion when telling the function CRC32 what
it is taking the CRC of. CRC_FILE tells CRC32 to calculate the CRC of the file
contained within the string argument. CRC_STR tells CRC32 to calculate the CRC of
the string argument itself. CRC_FILE has a value of 1 (TRUE) CRC_STR has a value of
0 (FALSE)

 CUR_USER = 0

Parameter passed to CURUSER()

 DEFS = 0

Parameter passed to various statements for default values

 ECHODOTS = 1h

Parameter passed to INPUTSTR and PROMPTSTR statements (echo dots instead of
user input)

 ERASELINE = 20h

Parameter passed to INPUTSTR and PROMPTSTR statements (erase the current line
when user presses enter)

 FALSE = 0

BOOLEAN FALSE value

 FCL = 2

Value passed to STARTDISP to force line counting display

 FIELDLEN = 2h

Parameter passed to INPUTSTR and PROMPTSTR statements (displays parenthesis to
show input field width if ANSI enabled)

 FNS = 1

Value passed to STARTDISP to force non-stop display

 F_EXP = 2h

Expired subscription access allowed flag for CONFFLAG and CONFUNFLAG

 F_MW = 10h

Mail waiting flag for CONFFLAG and CONFUNFLAG

 F_REG = 1h

Registered access allowed flag for CONFFLAG and CONFUNFLAG

 F_SEL = 4h

Conference selected flag for CONFFLAG and CONFUNFLAG

 F_SYS = 8h

Conference SysOp access flag for CONFFLAG and CONFUNFLAG

 GRAPH = 1h

Parameter passed to DISPFILE statement to search for graphics specific files

 GUIDE = 4h

Parameter passed to INPUTSTR and PROMPTSTR statements (displays parenthesis
above current line if FIELDLEN used and ANSI not enabled)

 HIGHASCII = 1000h

Parameter passed to INPUTSTR and PROMPTSTR statements (allow high ascii
characters, regardless of current valid character set, if disable high ascii filter set to
yes)

 LANG = 4h

Parameter passed to DISPFILE statement to search for language specific files

 LFAFTER = 100h

Parameter passed to INPUTSTR, PROMPTSTR and DISPTEXT statements (send an
extra line feed after user presses enter)

 LFBEFORE = 80h

Parameter passed to INPUTSTR, PROMPTSTR and DISPTEXT statements (send an
extra line feed before prompt display)

 LOGIT = 8000h

Parameter passed to DISPTEXT statement (log text to callers log)

 LOGITLEFT = 10000h

Parameter passed to DISPTEXT statement (log text to callers log, forcing left
justification)

 NC = 0

Value passed to STARTDISP to not change display mode

 NEWLINE = 40h

Parameter passed to INPUTSTR, PROMPTSTR and DISPTEXT statements (send a line
feed after user presses enter)

 NOCLEAR = 400h

Parameter passed to INPUTSTR and PROMPTSTR statements (don't clear field at first
keypress regardless of ANSI)

 NO_USER = -1

Parameter passed to CURUSER()

 O_RD = 0

Parameter passed to FCREATE/FOPEN/FAPPEND to open a file in read only mode

 O_RW = 2

Parameter passed to FCREATE/FOPEN/FAPPEND to open a file in read and write mode

 O_WR = 1

Parameter passed to FCREATE/FOPEN/FAPPEND to open a file in write only mode

 SEC = 2h

Parameter passed to DISPFILE statement to search for security specific files

 STACKED = 10h

Parameter passed to INPUTSTR and PROMPTSTR statements (allow semi-colons and
spaces in addition to valid character set passed)

 S_DB = 3h

Parameter passed to FCREATE/FOPEN/FAPPEND to deny read and write (both) access
from other processes

 S_DN = 0h

Parameter passed to FCREATE/FOPEN/FAPPEND to allow read and write (deny none)
access from other processes

 S_DR = 1h

Parameter passed to FCREATE/FOPEN/FAPPEND to deny read access from other
processes

 S_DW = 2h

Parameter passed to FCREATE/FOPEN/FAPPEND to deny write access from other
processes

 TRUE = 1

BOOLEAN TRUE value

 UPCASE = 8h

Parameter passed to INPUTSTR and PROMPTSTR statements (force user input to
upper case)

 WORDWRAP = 200h

Parameter passed to INPUTSTR and PROMPTSTR statements (if user hits end of line,
save the text at the end of the line for future use)

 YESNO = 4000h

Parameter passed to INPUTSTR and PROMPTSTR statements (Only allow international
yes/no responses)

 NO_USER = -1

Return by GetUser - variables are currently undefined

 CUR_USER = 0

Return by GetUser - User variables are for the current user
 See also : Predefined Variables

PREDEFINED VARIABLES

PPL predefines the following variables for user record access:

BOOLEAN U_CLS

Clear screen between messages status

BOOLEAN U_DEF79

79 column message editor default

BOOLEAN U_EXPERT

Users current expert status

BOOLEAN U_FSE

Users full screen editor default

BOOLEAN U_FSEP

Prompt for full screen editor status

BOOLEAN U_LONGHDR

6 line vs 4 line message header status

BOOLEAN U_SCROLL

Scroll multi-screen message status

DATE U_EXPDATE

The users subscription expiration date

DATE U_PWDEXP

The date that the users password expires and must be changed

INTEGER U_EXPSEC

The users expired security level

INTEGER U_PAGELEN

The users page length

INTEGER U_SEC

The users security level

STK_LIMIT

This constant was added so the PPL programmer could determine how close they are
getting to the stack limit when using recursion.

STRING U_ADDR(5)

The users address information (if the SysOp has enabled address recording)

Subscript 0 = First street line
1 = Second street line
2 = City
3 = State
4 = Zip
5 = Country

STRING U_ALIAS

The users alias (if the SysOp has enabled alias use)

STRING U_BDPHONE

The users business/data phone number

STRING U_CITY

The users city/state information

STRING U_CMNT1

The users comment field

STRING U_CMNT2

The SysOps comment field

STRING U_HVPHONE

The users home/voice phone number

STRING U_NOTES(4)

Notes about the user (if the SysOp has enabled the note capability)
Subscripts 0-4 hold lines 1-5

STRING U_PWD

The users password

STRING U_TRANS

The users default transfer protocol

STRING U_VER

The users verification string (if the SysOp has enabled user verification)
 See also : Predefined Constants

 EXPRESSION OPERATORS
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

PPL allows the following operators to be used in expressions (lvalue and rvalue are
simply the values to the left and right, respectively, of binary operators):

(- Start sub-expression (also allows [to be used)
) - End sub-expression (also allows] to be used)
^ - Raise lvalue to the power of rvalue (also allows ** to be used)
* - Multiply lvalue by rvalue
/ - Divide lvalue by rvalue
% - Remainder of lvalue divided by rvalue
+ - Add rvalue to lvalue
- - Subtract rvalue from lvalue
= - Is lvalue equal to rvalue (also allows ==)
<> - Is lvalue not equal to rvalue (also allows != and ><)
< - Is lvalue less than rvalue
<= - Is lvalue less than or equal to rvalue (also allows =<)
> - Is lvalue greater than rvalue
>= - Is lvalue greater than or equal to rvalue (also allows =>)
! - Logical not of rvalue
& - Logical and of lvalue with rvalue (also allows &&)
| - Logical or of lvalue with rvalue (also allows ||)

 ABORT() :BOOLEAN
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns a flag indicating whether or not the user aborted the display of data via
^K/^X or answering no to a MORE? Prompt

 ABS(var:integer) :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns the absolute value of "var"

 AND(var1:integer,var2:integer) :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns the bitwise and of two integer expressions

 See also : Or Xor Not

 ANSION() :BOOLEAN
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns TRUE if the user has ANSI capabilities
 See also : OnLocal GrafMode

 ASC(var:string) :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns the ASCII value (0-255) of the first character of "var"
 See also : Chr

 B2W(var1:integer,var2:integer) :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns a word built from two byte sized values by the formula:
 (var1*0100h+var2)

 CALLID() :STRING
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns the caller ID string

 CALLNUM() :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns the caller number of the current user.

 CARRIER() :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns the carrier speed as reported by the modem to PCBoard
 See also : ErrCorrect

 CCTYPE(var:string) :STRING
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns the issuer of credit card number "var"
 See also : FmtCC InputCC ValCC

 CDON() :BOOLEAN
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns TRUE if the carrier detect signal is on
 See also : CdCheckOn CdCheckOff

 CHATSTAT() :BOOLEAN
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Return the current users chat availability status (TRUE means available, FALSE means
unavailable).
 See also : PageStat

 CHR(var:integer) :BIGSTR
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns a single character long string of the character represented by ASCII code
"var" (0-255)
 See also : Asc

 CONFREG(confNum:integer) :BOOLEAN

 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns TRUE if users registered flag is set, FALSE otherwise
 See also : ConfSel ConfSys ConfMw CurConf ConfExp CurConf
 ConfFlag ConfUnFlag Join ConfAlias LastIn

 CONFEXP(confNum:integer)
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns TRUE if users expired flag is set, FALSE otherwise
NOTE:
ConfReg() = FALSE & CONFEXP = TRUE, user locked out ConfReg() = TRUE &
CONFEXP = TRUE, user reg & exp
 See also : ConfSel ConfSys ConfMw CurConf CurConf
 ConfFlag ConfUnFlag Join ConfAlias LastIn
 ConfReg

 CONFSEL(confNum:integer) :BOOLEAN
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns TRUE if user has selected the conference, FALSE otherwise
 See also : ConfSys ConfMwCurConf ConfExp CurConf
 ConfFlag ConfUnFlag Join ConfAlias LastIn
 ConfReg

 CONFSYS(confNum:integer) :BOOLEAN
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns TRUE if user has conference SysOp access, FALSE otherwise
 See also : ConfSel ConfMwCurConf ConfExp CurConf
 ConfFlag ConfUnFlag Join ConfAlias LastIn
 ConfReg

 CONFMW(confNum:integer) :BOOLEAN
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns TRUE if user has mail waiting in conference "confnum", FALSE otherwise
 See also : ConfSel ConfSys CurConf ConfExp CurConf
 ConfFlag ConfUnFlag Join ConfAlias LastIn
 ConfReg

 CURCOLOR() :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns the current color (0-255) in use by the ANSI driver
 See also : DefColor

 CURCONF() :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns the current conference number

 See also : ConfSel ConfSys ConfMw ConfExp CurConf
 ConfFlag ConfUnFlag Join ConfAlias LastIn
 ConfReg

 CURSEC() :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns the users current security level
 See also : SysopSec

 DATE() :DATE
 ▀▀▀▀▀▀▀▀▀▀▀▀
Returns todays date
 See also : Time

 DAY(datevar:date) :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns the day of the month (1-31) of "datevar"
 See also : Month Year Dow

 DBGLEVEL() :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns the debug level in effect

 DBGLEVEL dbg:integer
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Set the debug level to "dbg"

 DEFANS() :BIGSTR
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns the last default answer passed to an Input statement. For example, this
allows a PPE to determine what the default answer would have been had a PCBTEXT
prompt not been replaced with a PPE.
 See also : LastAns

 DEFCOLOR() :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns the default color as specified in PCBSetup

 DEFCOLOR
 ▀▀▀▀▀▀▀▀

Resets the current color to the system default
 See also : CurColor

 DOW(day:date) :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns the day of the week (0 = Sunday, 6 = Saturday) that "day" fell on
 See also : Date Month Year

 ERRCORRECT() :BOOLEAN
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns TRUE if a session is determined to be error corrected (or FALSE for non-error
corrected sessions).
 See also : Carrier

 EVTTIMEADJ() :BOOLEAN
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Detects if the users time has been adjusted for an upcoming event. This is useful to
detect if a users time left can be increased with the AdjTime statement.
 See also : AdjTime

 EXIST(file:string) :BOOLEAN
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns a boolean TRUE value if the file "file" exists
 See also : Delete Copy Append FileInf Rename

 FERR(channel:integer) :BOOLEAN
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns TRUE if a file access error occurred on channel "channel" since the file was
opened or FERR was last called
 See also : FOpen

 FILEINF(file:string,option:integer) :MULTITYPE
 ▀▀

Returns a piece of information (specified by "option") about the file "file"
 Valid values for "options": 1 = Return TRUE if file exists
 2 = Return file date stamp
 3 = Return file time stamp
 4 = Return file size
 5 = Return file attributes
01h = Read Only
02h = Hidden
04h = System
20h = Archive
 6 = Return file drive
 7 = Return file path
 8 = Return file base name
 9 = Return file extension

Return value type is depending on the info requested. It may be BOOLEAN, DATE,
INTEGER, STRING and TIME
 See also : Delete Copy Append Exist Rename

 FMTCC(format:strinf) :STRING
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns a formatted credit card number based on "format"
 See also CcType ValCC InputCC

 FMTREAL(realExp:real/dreal,fieldWidth:integer,decimalPlaces:integer)

▀▀▀
▀▀▀▀▀▀▀

Formats REAL/DREAL values for display purposes.
 realExp = A REAL/DREAL floating point expression
 fieldWidth = The minimum number of characters to display
 decimalPlaces = The number of characters to display to the right of
 the decimal point

 GETENV(var:string) :STRING
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns the value of the environment variable named by "var"

 GETTOKEN() :STRING
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns the next string token from a prior call to Tokenize (Same as the GETTOKEN
statement but can be used in an expression without prior assignement to a variable)

 GETTOKEN VAR
 ▀▀▀▀▀▀▀▀▀▀▀▀
 Get a token from a previous call to Tokenize and assign
 it to VAR

 See also : Tokenize TokenStr TokCount

 GETX() :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns the current column (X position) of the cursor on the display
 See also : GetY AnsiPos

 GETY() :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns the current row (Y position) of the cursor on the display
 See also : GetX AnsiPos

 GRAFMODE() :STRING
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns a character indicating the users graphics status
 R = RIPscrip supported
 G = ANSI graphics (color and positioning) supported

 A = ANSI positioning (no color) supported
 N = No graphics (RIP or ANSI) supported

 See also : AnsiOn OnLocal

 HELPPATH() :STRING
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns the path, as specified in PCBSetup, to the help files
 See also : PPEPath SlPath TempPath

 HIMSGNUM() :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns the high message number for the current conference.
 See also : LoMsgNum

 HOUR(dayhour:time) :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns the hour of the day (0-23) of "dayhour"
 See also : Min Sec

 I2S(var1:integer,var2:integer) :STRING
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns a string representing the integer value "var1" converted to base "var2"

 See also : S2i String

 INKEY() :STRING
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns the next keypress as a single character long string, or a string with the name
of the function or cursor control key
 See also : KInkey MGetByte MInkey

 INSTR(var1:bigstr,var2:bigstr) :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns the position of "var2" in "var1" (1-LEN(var1)) or 0 if "var2" not in "var1"

 ISBITSET(var:multitype, bit:integer) :BOOLEAN
 ▀▀▀

Check the status of a specified bit in a variable.

 This function is primarily intended to be used with BIGSTR variables
 which can be up to 2048 bytes long. However, it will work with other
 data types (and expressions) as well if desired.

 See also : BitSet BitClear

 ISNONSTOP() :BOOLEAN
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Return whether or not the display is currently in non-stop mode (ie, did the user type
NS as part of their command line)
 See also : StartDisp

 KBDBUFSIZE() :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Return the number of key presses pending in the KbdString buffer
 See also : PPLBufSize KbdFlush KbdStuff KbdFile KbdString
 KbdFileUsed MdmFlush KeyFlush KbdFlush

 KBDFILEUSED() :BOOLEAN
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Return TRUE if key presses are being stuffed via a KbdFile statement.
 See also : KbdBufSize PPLBufSize KbdFlush KbdStuff KbdFile
 MdmFlush KeyFlush KbdFlush KbdString

 KINKEY() :STRING
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns the next keypress from the BBS keyboard as a single character long string, or
a string with the name of the function or cursor control key
 See also : Inkey MInkey MGetByte

 LANGEXT() :STRING
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns the file extension for the users language selection
 See also : Lang

 LASTANS() :STRING
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

function to return the last answer accepted by an Input statement.
 See also : DefAns

 LEFT(var1:string,var2:integer) :BIGSTR
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns the left-most "var2" characters of "var1"
 See also : Right Mid

 LEN(var:bigstr) :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns the length of "var"

 LOGGEDON() :BOOLEAN
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns TRUE if the user has already logged on to the BBS, FALSE otherwise

 LOMSGNUM() :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns the low message number for the current conference.
 See also : HiMsgNum

 LOWER(var:bigstr) :BIGSTR
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns a string of "var" with all uppercase characters converted to lowercase
characters
 See also : Upper Mixed

 LPRINTED() :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Return the number of lines printed on the display
 See also : StartDisp

 LTRIM(var1:bigstr,var2:string) :BIGSTR
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns a string of "var1" with the first character of "var2" trimmed from the left

 See also : Rtrim Trim

 MASK_ALNUM() :STRING
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns a valid character mask for input statements of A through Z, a through z, and
0 through 9
 See also : Mask_Alpha Mask_Ascii Mask_File Mask_Num Mask_Path Mask_Pwd

 MASK_ALPHA() :STRING
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns a valid character mask for input statements of A through Z and a through z

 See also : Mask_Alnum Mask_Ascii Mask_File Mask_Num Mask_Path Mask_Pwd

 MASK_ASCII() :STRING
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns a valid character mask for input statements of space (" ") through tilde ("~")

 See also : Mask_Alpha Mask_Alnum Mask_File Mask_Num Mask_Path Mask_Pwd

 MASK_FILE() :STRING
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns a valid character mask for input statements of file names
 See also : Mask_Alpha Mask_Ascii Mask_Alnum Mask_Num Mask_Path Mask_Pwd

 MASK_NUM() :STRING
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns a valid character mask for input statements of 0 through 9
 See also : Mask_Alpha Mask_Ascii Mask_File Mask_Alnum Mask_Path Mask_Pwd

 MASK_PATH() :STRING
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns a valid character mask for input statements of path names
 See also : Mask_Alpha Mask_Ascii Mask_File Mask_Num Mask_Alnum Mask_Pwd

 MASK_PWD() :STRING
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns a valid character mask for input statements of passwords
 See also : Mask_Alpha Mask_Ascii Mask_File Mask_Num Mask_Path Mask_Alnum

 MAXNODE() :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns the maximum node possible with the current software (ie, /2 would return 2,
/10 would return 10, etc)
 See also : PcbNode

 MEGANUM(number:integer)
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Converts a decimal number (from 0 to 1295) to a hexa-tri-decimal number, or
meganum.

 MGETBYTE() :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns the value of the next byte from the modem (0-255) or -1 if there are no
bytes waiting for input
 See also : Inkey KInkey MInkey

 MID(var1:bigstr,var2:integer,var3:integer) :BIGSTR
 ▀▀

Returns a string from "var1" starting at the "var2" position of "var1" and containing
"var3" characters of "var1"
 See also : Right Left

 MIN(var1:time) :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns the minute of the hour (0-59) of "var1"
 See also : Hour Sec

 MINKEY() :STRING
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns the next keypress from the remote caller as a single character long string, or
a string with the name of the function or cursor control key
 See also : Inkey KInkey MGetByte

 MINLEFT() :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns the current callers minutes left to use online
 See also : MinOn

 MINON() :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns the current callers minutes online so far this session
 See also : MinLeft

 MIXED(var1:string)
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Converts a string to mixed (or proper name) case
 See also : Upper Lower

 MKADDR(seg:integer, off:integer) :INTEGER
 ▀▀▀

Returns a segment:offset address as a long integer built from two word sized values
by the formula: (var1*00010000h+var2)
 See also : VarSeg VarOff VarAddr

 MKDATE(year:integer, month:integer, day:integer) :DATE
 ▀▀

Returns a date with the year specified by "year" (1900-2079), month specified by
"month" (1-12), and day specified by "day" (1-31).
 See also : Year Month Day

 MODEM() :STRING
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns the modem connect string as reported by the modem to PCBoard
 See also : Carrier

 MONTH(var1:date) :INTEGER

 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns the month of the year (1-12) of "var1"
 See also : Year Day Dow

 NOCHAR() :STRING
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns the current language no character
 See also : YesChar

 NOT(var1:integer) :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns the bitwise complement (all bits inverted) of an integer expression
 See also : Or And Xor

 ONLOCAL() :BOOLEAN
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns TRUE if the user is on locally
 See also : AnsiOn GrafMode

 OR(var1:integer, var2:integer) :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns the bitwise or of two integer expressions
 See also Xor And Not

 PAGESTAT() :BOOLEAN
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns TRUE if the user has paged the SysOp (or PageOn has been issued), FALSE
otherwise (or PageOff has been issued)
 See also : ChatStat

 PCBDAT() :STRING
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns a string with the path and file name of PCBOARD.DAT

 PCBNODE() :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns the node number
 See also : MaxNode

 PEEKB(var:integer) :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns a byte value (0-255) located at memory address "var" (PEEK is a synonym) -

 See also : PeekDW PeekW PokeB PokeW PokeDW

 PEEKDW(var:integer) :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns a signed integer value (-2147483648 - +2147483647) located at memory
address "var"
 See also : PeekB PeekW PokeB PokeW PokeDW

 PEEKW(var:integer) :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns a word value (0-65535) located at memory address "var"
 See also : PeekDW PeekB PokeB PokeW PokeDW

 PPENAME() :STRING
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns the name of the currently executing PPE file minus the path and extension

 See also : PPEPath

 PPEPATH() :STRING
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns a string with the path (no file name) of the currently executing PPE file

 See also : PPEName

 PPLBUFSIZE() :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns the number of key presses pending in the KbdStuff buffer.
 See also : KbdBufSize KbdFlush KbdStuff KbdFile KbdString
 KbdFileUsed MdmFlush KeyFlush KbdFlush

 PSA(var:integer) :BOOLEAN
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns TRUE if the feature specified by "var" is enabled, FALSE if the feature
specified by "var" is disabled

 Valid values for var:
 1 = Alias Support Enabled
 2 = Verify Support Enabled
 3 = Address Support Enabled
 4 = Password Support Enabled
 5 = Statistics Support Enabled
 6 = Notes Support Enabled

 See also : TPAGet

 RANDOM(var:integer) :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns a random number between 0 and "var" inclusive

 READLINE(file:string, line:integer) :STRING
 ▀▀▀
Read and return line number "line" from file "file"

 REGAH() :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns the value of the AH register after a DoIntr statement
 See also : RegAl RegAx

 REGAL() :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns the value of the AL register after a DoIntr statement
 See also : RegAh RegAx

 REGAX() :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns the value of the AX register after a DoIntr statement
 See also : RegAh RegAl

 REGBH() :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns the value of the BH register after a DoIntr statement
 See also : RegBl RegBx

 REGBL() :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns the value of the BL register after a DoIntr statement
 See also : RegBh RegBx

 REGBX() :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns the value of the BX register after a DoIntr statement
 See also : RegBh RegBl

 REGCF() :BOOLEAN
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns the state of the carry flag after a DoIntr statement
 See also : RegF

 REGCH() :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns the value of the CH register after a DoIntr statement
 See also : RegCl RegCx

 REGCL() :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns the value of the CL register after a DoIntr statement
 See also : RegCh RegCx

 REGCX() :INTEGER

 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns the value of the CX register after a DoIntr statement
 See also : RegCh RegCl

 REGDH() :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns the value of the DH register after a DoIntr statement
 See also : RegDl RegDx

 REGDI() :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns the value of the DI register after a DoIntr statement
 See also : DoIntr

 REGDL() :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns the value of the DL register after a DoIntr statement
 See also : RegDh RegDx

 REGDS() :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns the value of the DS register after a DoIntr statement
 See also : DoIntr

 REGDX() :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns the value of the DX register after a DoIntr statement
 See also : RegDh RegDl

 REGES() :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns the value of the ES register after a DoIntr statement
 See also : DoIntr

 REGF() :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns the value of the flags register after a DoIntr statement
See also : RegCf DoIntr

 REGSI() :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns the value of the SI register after a DoIntr statement
 See also : DoIntr

 REPLACE(str:bigstr, search:string, replace:string) :BIGSTR
 ▀▀
Returns a string of "str" with all occurences of the first character of "search" replaced
by the first character of "replace"

 See also : ReplaceStr

 REPLACESTR(str:bigstr, search:string, replace:string) :BIGSTR

▀▀▀

It functions just like the Replace function except that a complete sub-string may be
specified for both search and replace
 str is the string to work on
 search is the string to search for
 replace is the string to replace search with

 See also : Replace

 RIGHT(str:bigstr, len:integer) :BIGSTR
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns the right-most "len" characters of "str"
 See also : Left

 RTRIM(str1:bigstr, trim:string) :BIGSTR
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns a string of "str1" with the first character of "trim" trimmed from the right
 See also : Ltrim

 S2I(str:string, base:integer) :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns an integer representing the string "str" converted from base "base"
 See also : I2s

 SCRTEXT(col:integer, row:integer, len:integer, code:boolean) :STRING

▀▀▀
▀▀▀▀▀▀▀
Returns a string with the text (and color information in the form of @X codes if "code"
is TRUE) from column "col", row "row", and of length "len"
 See also : ScrFile

 SEC(var:time) :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns the second of the minute (0-59) of "var"
 See also : Hour Min

 SHOWSTAT() :BOOLEAN
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns TRUE if writing to the display is active, FALSE if writing to the display is
disabled
 See also : ShowOff ShowOn

 SLPATH() :STRING
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns the path, as specified in PCBSetup, to the login security files
 See also : HelpPath PPEPath TempPath

 SPACE(len:integer) :BIGSTR
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns a string of spaces "len" characters long

 STRING(var:multitype) :STRING
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns "var" converted to a string
 See also : I2s

 STRIP(str:bigstr, char:string) :BIGSTR
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns a string of "str" with all occurrences of the first character of "char" removed
 See also : StripAtx StripStr

 STRIPATX(str:bigstr) :BIGSTR
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns a string of "str" with all @X codes removed
 See also : Strip StripStr

 STRIPSTR(str:bigstr, search:string) :BIGSTR
 ▀▀▀
Functions just like the Strip function except that a complete sub-string may be
specified for search
 str is the string to work on
 search is the string to search for

 See also : Strip StripAtx

 SYSOPSEC() :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns the SysOp security defined in PCBOARD.DAT
 See also : CurSec

 TEMPPATH() :STRING
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns the path, as specified in PCBSetup, to the temporary work directory
 See also : SlPath HelpPath PPEPath

 TIME() :TIME
 ▀▀▀▀▀▀▀▀▀▀▀▀
Returns the current time
 See also : TimeAP Date

 TIMEAP(var:time) :STRING
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns a string representing the time "var" in civilian format (XX:XX:XX AM)
 See also : Time

 TOKCOUNT() :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns the number of tokens available via the GetToken statement and/or function
 See also : Tokenize GetToken TokenStr

 TOKENSTR() :STRING
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns a previously tokenized string reconstructed with semi-colons separating the
component tokens
 See also : Tokenize GetToken TokCount

 TOtype(exp)
 ▀▀▀▀▀▀▀▀▀▀▀
TOBOOLEAN, TOMONEY, TOSTRING, TOBIGSTR, TOINTEGER, TOUNSIGNED, TOREAL,
TODREAL, TOFLOAT, TODOUBLE, TODATE, TOEDATE, TOTIME, TOBYTE, TOWORD,
TODWORD, TOUBYTE, TOUWORD, TOUDWORD, TOSBYTE, TOSWORD, TOSDWORD,
TOSHORT, TOINT, & TOLONG
Used to force the result of an expression to a specific type
Usage: TOtype(exp) (returns type)
 type is the actual type to force (BIGSTR, BOOLEAN, etc.)
 exp is an expression of any type

 See also : S2i I2s String

 TRIM(str:bigstr, char:string) :BIGSTR
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns a string of "str" with the first character of "char" trimmed from both ends
 See also : Rtrim Ltrim

 UPPER(str:bigstr) :BIGSTR
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns a string of "str" with all lowercase characters converted to uppercase
characters
 See also : Lower Mixed

 UN_CITY() :STRING
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns a nodes city from USERNET.XXX after a RdUnet statement
 See also : Un_Name Un_Oper Un_Stat

 UN_NAME() :STRING
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns a nodes user name from USERNET.XXX after a RdUnet statement
 See also : Un_City Un_Oper Un_Stat

 UN_OPER() :STRING
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns a nodes operation text from USERNET.XXX after a RdUnet statement
 See also : Un_City Un_Name Un_Stat

 UN_STAT() :STRING
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns a nodes status from USERNET.XXX after a RdUnet statement
 See also : Un_City Un_Name Un_Oper

 U_BDL() :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns the current users number of bytes downloaded
 See also : U_BdlDay U_Bul U_FdlU_Ful U_InConf
 U_LDate U_LDir U_LmrU_Logons U_LTime

 U_MsgRd U_MsgWr U_Name U_PwdHistU_PwdLc
 U_PwdTc U_RecNum U_Stat U_TimeOn

 U_BDLDAY() :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns the current users number of bytes downloaded today
 See also : U_BdlU_Bul U_FdlU_Ful U_InConf
 U_LDate U_LDir U_LmrU_Logons U_LTime
 U_MsgRd U_MsgWr U_Name U_PwdHistU_PwdLc
 U_PwdTc U_RecNum U_Stat U_TimeOn

 U_BUL() :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns the current users number of bytes uploaded
 See also : U_BdlU_BdlDay U_FdlU_Ful U_InConf
 U_LDate U_LDir U_LmrU_Logons U_LTime
 U_MsgRd U_MsgWr U_Name U_PwdHistU_PwdLc
 U_PwdTc U_RecNum U_Stat U_TimeOn

 U_FDL() :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns the current users number of files downloaded
 See also : U_BdlU_BdlDay U_BulU_Ful U_InConf
 U_LDate U_LDir U_LmrU_Logons U_LTime
 U_MsgRd U_MsgWr U_Name U_PwdHistU_PwdLc
 U_PwdTc U_RecNum U_Stat U_TimeOn

 U_FUL() :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns the current users number of files uploaded
 See also : U_BdlU_BdlDay U_BulU_Fdl U_InConf
 U_LDate U_LDir U_LmrU_Logons U_LTime
 U_MsgRd U_MsgWr U_Name U_PwdHistU_PwdLc
 U_PwdTc U_RecNum U_Stat U_TimeOn

 U_INCONF(record:integer, conf:integer) :BOOLEAN
 ▀▀▀
Returns TRUE if user record number "record" is registered in conference "conf"
 See also : U_BdlU_BdlDay U_BulU_Fdl U_Ful
 U_LDate U_LDir U_LmrU_Logons U_LTime
 U_MsgRd U_MsgWr U_Name U_PwdHistU_PwdLc
 U_PwdTc U_RecNum U_Stat U_TimeOn

 U_LDATE() :DATE
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns the current users last date on the system
 See also : U_BdlU_BdlDay U_BulU_Fdl U_Ful
 U_InConf U_LDir U_LmrU_Logons U_LTime
 U_MsgRd U_MsgWr U_Name U_PwdHistU_PwdLc
 U_PwdTc U_RecNum U_Stat U_TimeOn

 U_LDIR() :DATE
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Returns the current users last directory scan date
 See also : U_BdlU_BdlDay U_BulU_Fdl U_Ful
 U_InConf U_LDate U_LmrU_Logons U_LTime
 U_MsgRd U_MsgWr U_Name U_PwdHistU_PwdLc
 U_PwdTc U_RecNum U_Stat U_TimeOn

 U_LMR(confNum:integer) :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
function to return the number of the last message read for the specified conference.
 See also : U_BdlU_BdlDay U_BulU_Fdl U_Ful
 U_InConf U_LDate U_LDir U_Logons U_LTime
 U_MsgRd U_MsgWr U_Name U_PwdHistU_PwdLc
 U_PwdTc U_RecNum U_Stat U_TimeOn

 U_LOGONS() :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns the current users number of times logged on
 See also : U_BdlU_BdlDay U_BulU_Fdl U_Ful
 U_InConf U_LDate U_LDir U_Lmr U_LTime
 U_MsgRd U_MsgWr U_Name U_PwdHistU_PwdLc
 U_PwdTc U_RecNum U_Stat U_TimeOn

 U_LTIME() :TIME
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns the current users last time on the system
 See also : U_BdlU_BdlDay U_BulU_Fdl U_Ful
 U_InConf U_LDate U_LDir U_Lmr U_Logons
 U_MsgRd U_MsgWr U_Name U_PwdHistU_PwdLc
 U_PwdTc U_RecNum U_Stat U_TimeOn

 U_MSGRD() :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns the number of messages the user has read
 See also : U_BdlU_BdlDay U_BulU_Fdl U_Ful
 U_InConf U_LDate U_LDir U_Lmr U_Logons
 U_LTime U_MsgWr U_Name U_PwdHistU_PwdLc
 U_PwdTc U_RecNum U_Stat U_TimeOn

 U_MSGWR() :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns the number of messages the user has written
 See also : U_BdlU_BdlDay U_BulU_Fdl U_Ful
 U_InConf U_LDate U_LDir U_Lmr U_Logons
 U_LTime U_MsgRd U_Name U_PwdHistU_PwdLc
 U_PwdTc U_RecNum U_Stat U_TimeOn

 U_NAME() :STRING
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns the current users name
 See also : U_BdlU_BdlDay U_BulU_Fdl U_Ful
 U_InConf U_LDate U_LDir U_Lmr U_Logons
 U_LTime U_MsgRd U_MsgWr U_PwdHistU_PwdLc
 U_PwdTc U_RecNum U_Stat U_TimeOn

 U_PWDHIST(hist:integer) :STRING
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns the specified password from the password history Valid values for "hist" are 1
through 3
 See also : U_BdlU_BdlDay U_BulU_Fdl U_Ful
 U_InConf U_LDate U_LDir U_Lmr U_Logons
 U_LTime U_MsgRd U_MsgWr U_Name U_PwdLc
 U_PwdTc U_RecNum U_Stat U_TimeOn

 U_PWDLC() :DATE
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns the date of the last password change
 See also : U_BdlU_BdlDay U_BulU_Fdl U_Ful
 U_InConf U_LDate U_LDir U_Lmr U_Logons
 U_LTime U_MsgRd U_MsgWr U_Name U_PwdHist
 U_PwdTc U_RecNum U_Stat U_TimeOn

 U_PWDTC() :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns the number of times the password has been changed
 See also : U_BdlU_BdlDay U_BulU_Fdl U_Ful
 U_InConf U_LDate U_LDir U_Lmr U_Logons
 U_LTime U_MsgRd U_MsgWr U_Name U_PwdHist
 U_PwdLc U_RecNum U_Stat U_TimeOn

 U_RECNUM(user:string) :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns the user record number (0-65535) for user name "user" or -1 if "user" is not
registered on this system.
 See also : U_BdlU_BdlDay U_BulU_Fdl U_Ful
 U_InConf U_LDate U_LDir U_Lmr U_Logons
 U_LTime U_MsgRd U_MsgWr U_Name U_PwdHist
 U_PwdLc U_PwdTc U_Stat U_TimeOn

 U_STAT(option:integer) :DATE or :INTEGER
 ▀▀
Returns a statistic about the user that is tracked by PCBoard 5
 Valid values for "option" are 1 through 15

 1 - Returns the first date the user called the system
 2 - Returns the number of SysOp pages the user has requested
 3 - Returns the number of group chats the user has
 participated in
 4 - Returns the number of comments the user has left
 5 - Returns the number of 300 bps connects
 6 - Returns the number of 1200 bps connects
 7 - Returns the bumber of 2400 bps connects
 8 - Returns the number of 9600 bps connects
 9 - Returns the number of 14400 bps connects
 10 - Returns the number of security violations
 11 - Returns the number of "not registered in conference"
 warnings

 12 - Returns the number of times the users download limit
 has been reached
 13 - Returns the number of "file not found" warnings
 14 - Returns the number of password errors the user has had
 15 - Returns the number of verify errors the user has had

 See also : U_BdlU_BdlDay U_BulU_Fdl U_Ful
 U_InConf U_LDate U_LDir U_Lmr U_Logons
 U_LTime U_MsgRd U_MsgWr U_Name U_PwdHist
 U_PwdLc U_PwdTc U_RecNum U_TimeOn

 U_TIMEON() :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns the current users time online today in minutes
 See also : U_BdlU_BdlDay U_BulU_Fdl U_Ful
 U_InConf U_LDate U_LDir U_Lmr U_Logons
 U_LTime U_MsgRd U_MsgWr U_Name U_PwdHist
 U_PwdLc U_PwdTc U_RecNum U_Stat

 VALCC(CCnum:string) :BOOLEAN
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns TRUE if "CCnum" is a valid credit card number
 See also : ValCC InputCC CcType

 VALDATE(date:string) :BOOLEAN
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns TRUE if "date" is in a valid date format
 See also : ValTime

 VALTIME(time:string) :BOOLEAN
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns TRUE if "time" is in a valid time format
 See also : ValDate

 VER() :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns the version number of PCBoard that is running

 XOR(var1:integer, var2:integer) :INTEGER
 ▀▀
Returns the bitwise exclusive-or of two integer expressions
 See also : Or And Not

 YEAR(var:date) :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns the year (1900-2079) of "var"
 See also : Month Day Dow

 YESCHAR() :STRING
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns the current language yes character
 See also : NoChar

 ADJTIME min:integer
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Add or subtract "min" minutes to the users time available this session
 See also : EvtTimeAdj

 ANSIPOS col:integer, row:integer
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
If ANSI is available, position the cursor in column "col" and in row "row"
 Legal ranges: 1 <= col <= 80
 1 <= row <= 23 (Because of the status lines)
 (1,1) is the top left corner of the screen

Note : Be aware that the user may have a different number of lines on his screen... if
the user has 50 lines for exemple and that you do an ANSIPOS sentence to position
the cursor on the 23rd line, the user will have a prompt in the middle of his screen...

 See also : GetX GetY

 BACKUP var:integer
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Backup (move the cursor to the left) "var" columns without going past column 1
 See also : Forward

 BITCLEAR variable:multitype, bit:integer
 ▀▀
Clears a specified bit from a variable.
This statement is primarily intended to be used with BIGSTR variables which can be
up to 2048 bytes long. However, it will work with other data types as well if desired.
Just be aware of the potential problems in 'bit twidling' non-string buffers and then
trying to access them later as their 'intended' type without re-initializing the variable.
If the bit parameter (an integer from 0 to the number of bits in the object) is invalid
no processing takes place.
 See also : BitSet IsBitSet

 BITSET variable:multitype, bit:integer
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Set a specified bit from a variable.
This statement is primarily intended to be used with BIGSTR variables which can be
up to 2048 bytes long. However, it will work with other data types as well if desired.
Just be aware of the potential problems in 'bit twidling' non-string buffers and then
trying to access them later as their 'intended' type without re-initializing the variable.
If the bit parameter (an integer from 0 to the number of bits in the object) is invalid
no processing takes place.
 See also : BitClear IsBitSet

 BLT bltnr:integer
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Display bulletin number "bltnr"

 BROADCAST var1:integer, var2:integer, message:string
 ▀▀
Broadcast message "message" to nodes from "var1" to "var2" inclusive

 BYE
 ▀▀▀
Same as having the user type BYE from the command prompt
 See also : Goodbye Hangup DtrOff

 CALL ppename
 ▀▀▀▀▀▀▀▀▀▀▀▀
Load and execute PPE filename specified by "ppename"
 See also : Shell

 CDCHKOFF
 ▀▀▀▀▀▀▀▀
Turn off carrier detect checking
 See also : CdCheckOn CdOn

 CDCHKON
 ▀▀▀▀▀▀▀
Turn on carrier detect checking
 See also : CdCheckOff CdOn

 CHAT
 ▀▀▀▀
Initiate SysOp chat mode
 See also : ChatStat PageStat

 CLOSECAP
 ▀▀▀▀▀▀▀▀
Close the capture file previously opened with OpenCap
 See also OpenCap

 CLREOL
 ▀▀▀▀▀▀
Clear to the end of the line, with the current color if in ANSI mode
 See also : Cls

 CLS
 ▀▀▀
Clear the screen, with the current color if in ANSI mode
 See also : ClrEol

 COLOR clr:integer
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Change the current color to "clr"
 See also : CurColor DefColor

 CONFFLAG conf:integer, flags:integer
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Turn on the conference "conf" flags specified by "flags"
 See also : ConfSel ConfSys ConfMw CurConf ConfExp CurConf
 ConfUnFlag Join ConfAlias LastIn ConfReg

 CONFUNFLAG conf:integer, flags:integer
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Turn off the conference "conf" flags specified by "flags"
 See also : ConfSel ConfSys ConfMw CurConf ConfExp CurConf
 ConfFlag Join ConfAlias LastIn ConfReg

 DEC var:multitype
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Decrement the value of var
 See also : Inc

 DELAY dlay:integer
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Pause for "dlay" clock ticks (1 clock tick = 1/18.2 second)
 See also : Wait

 DELETE file:string
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Deletes the filename specified by "file" (ERASE is a synonym)
 See also : Copy Append Exist FileInf Rename

 DELUSER
 ▀▀▀▀▀▀▀
Flags the current user record for deletion

 DIR arg:string
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Performs a file directory command, passing it "arg" as arguments

 DISPFILE file:string, flag:integer
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Display file "file" with "flag" alternate file flags
 valid flags : GRAPH
 SEC
 LANG
 See also : DispStr

 DISPSTR var:string
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Display file if "var" is "%filename", execute PPE if "var" is "!filename", or display
string "var"

 DISPTEXT promptnr:integer, flagson:integer
 ▀▀▀
Display PCBTEXT prompt "promptnr" using flags "flagson"
 valid flags : NEWLINE
 LFBEFORE
 LFAFTER
 BELL
 LOGIT

 LOGITLEFT
 See also : DispFile

 DOINTR intr, ax, bx, cx, dx, si, di, flags, ds, es (all is integer)

▀▀▀
▀▀▀▀▀▀
Generate interrupt number "intr" (0-255) with the register values passed as
parameters

Note : Use DoIntr at your own risks !
 See also : RegAx RegAh RegAl
 RegBx RegBh RegBl
 RegCx RegCh RegCl
 RegDx RegDh RegDl
 RegDi RegEs RegSi
 RegDs RegCf RegF

 DTROFF
 ▀▀▀▀▀▀
Turn off the DTR signal
Note : on most modems, lowering DTR will cause modem to hangup... this is a good
way if you want to simulate a bad connection, and then hangup without goodbye
screens... This is the best way for you, the nice sysop, to free your line quickly... :)
 See also : DtrOn Goodbye Bye Hangup

 DTRON
 ▀▀▀▀▀
Turn on the DTR signal
 See also : DtrOff

 END
 ▀▀▀
End PPE execution
 See also : End If End While

 FAPPEND chnl:integer, file:string, access:integer, shrmod:integer

▀▀▀
▀▀▀▀
Use channel "chnl" to open file "file" in append mode with access mode "access" and
share mode "shrmod"
 valid channels: 0 - 7 [0 is used for script questionnaires]
 valid access modes : O_RD, O_WR, O_RW [should use O_RW]
 valid share modes : S_DN, S_DR, S_DW, S_DB
 See also : FOpen FClose FCreate

 FCLOSE chnl:integer
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Close channel "chnl"
Accept channel -1 as the ReadLine() function 'channel' and close it
 See also : FAppend FClose FCreate FFlush

 FCREATE chnl:integer, file:string, access:integer, shrmod:integer

▀▀▀
▀▀▀▀
Use channel "chnl" to create and open file "file" in access mode "access" and share
mode "shrmod"
 valid channels: 0 - 7 [0 is used for script questionnaires]
 valid access modes : O_RD, O_WR, O_RW [should use O_WR]
 valid share modes : S_DN, S_DR, S_DW, S_DB
 See also : FOpen FClose FAppend

 FGET chnl:integer, var:multitype
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Read a line from channel "chnl" and assign it to "var"
 See also : FPut FPutLn FPutPad FRead

 FOPEN chnl:integer, file:string, access:integer, shrmod:integer

▀▀▀
▀▀
Use channel "chnl" to open file "file" in access mode "access" and share mode
"shrmod"
 valid channels: 0 - 7 [0 is used for script questionnaires]
 valid access modes : O_RD, O_WR, O_RW
 valid share modes : S_DN, S_DR, S_DW, S_DB
 See also : FCreate FClose FAppend FDefIn FDefOut

 FOR ... NEXT
 ▀▀▀▀▀▀▀▀▀▀▀▀
 Usage :
 FOR VAR = start:integer TO stop:integer [STEP incstep:integer]
 ...
 NEXT

FOR - Initializes a loop by assigning "start" to VAR and continuing while VAR <=
"stop" (if "incstep" >= 0) or VAR >= "stop" (if "incstep" < 0) (TO is required to
separate "start" and "stop". If STEP (optional) is not specified "incstep" defaults to 1)
NEXT - Adds "incstep" to VAR, transfers control to the closest FOR statement, and
marks the end of the FOR loop
 See also : While...EndWhile If...Then

 FORWARD var:integer
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Move the cursor forward (to the right) "var" columns without going past column 80
 See also : Backup

 FPUT chnl:integer, str:string[, str:string...]
 ▀▀
Write one or more "str" out to channel "chnl"
 See also : FGet FPutLn FPutPad FWrite FWrite

 FPUTLN chnl:integer[, str:string[, str:string...]]

 ▀▀
Write zero or more "str" out to channel "chnl" and terminate with a carriage
return/line feed pair
 See also : FGet FPut FPutPad FRead FWrite

 FPUTPAD chnl:integer, str:string, len:integer
 ▀▀▀
Write out "str", padding or truncating to length "len" as needed, to channel "chnl"
 See also : FGet FPut FPutLn FRead FWrite

 FRESHLINE
 ▀▀▀▀▀▀▀▀▀
If the cursor is not in column 1, do a newline
 See also : NewLine NewLines

 FREWIND chnl:integer
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Rewind channel "chnl" after flushing buffers and committing the file to disk.
 See also : FSeek

 GETUSER
 ▀▀▀▀▀▀▀
Fill the predefined variables (U_...) with current information from the user record

 GOSUB LABEL
 ▀▀▀▀▀▀▀▀▀▀▀
Transfer control to LABEL, marking the current PPE location for a future Return
statement (GO SUB is a synonym)
 See also : GoTo

 GOTO LABEL
 ▀▀▀▀▀▀▀▀▀▀
Transfer control to LABEL (GO TO is a synonym)
 See also : GoSub

 GOODBYE
 ▀▀▀▀▀▀▀
Same as having the user type G from the command prompt
 See also : Bye DtrOff Hangup

 HANGUP
 ▀▀▀▀▀▀
Hangup on the user without any notification
 See also : Bye Goodbye DtrOff

 IF ... THEN ... ELSE
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
 Usage 1:
 IF (exp:boolean) statement ...
Evaluate "exp" and, if true, execute statement; otherwise skip to the next statement
 Usage 2:
 IF (exp:boolean) THEN
 ...

 ELSEIF (exp2:boolean) THEN
 ...
 ELSE
 ...
 ENDIF

IF - If expression cond is TRUE then this statement transfers control to the
statement(s) following it, otherwise control is tranferred to the next ELSEIF, ELSE or
ENDIF statement (requires THEN [or DO] after the condition)
ELSEIF - (optional) If expression cond is TRUE then this statement transfers control to
the statements following it, otherwise control is tranferred to the next ELSEIF, ELSE
or ENDIF statement There may be multiple ELSEIF statements between the IF and
ELSE statements (ELSE IF is a synonym; nothing is required to come after the
condition, although THEN [or DO] may appear for clarification and consistency in the
source code)
ELSE - (optional) Separates the false portion of an IF/ELSEIF statement from the true
portion
ENDIF - Ends an IF/ELSEIF/ELSE statement block (END IF is a synonym)
 See also : While...EndWhile For...Next

 INC var:multitype
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Increment the value of "var"
 See also : Dec

 INPUT prompt:string, var:string
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Display "prompt" and get input from user, assigning it to "var" (60 characters
maximum)
 See also : InputCC InputDate InputInt InputMoney InputStr
 InputText InputTime InputYN

 INPUTCC prompt:string, var:string, color:integer
 ▀▀
Display "prompt" in color "color" and get a credit card formatted string from the user,
assigning it to "var" (16 characters maximum, valid characters 0-9)
 See also : InputInputDate InputInt InputMoney InputStr
 InputText InputTime InputYN

 INPUTDATE prompt:string, var:string, color:integer
 ▀▀
Display "prompt" in color "color" and get a date formatted string from the user,
assigning it to "var" (8 characters maximum, valid characters 0-9 - /)
 See also : InputInputCC InputInt InputMoney InputStr
 InputText InputTime InputYN

 INPUTINT prompt:string, var:string, color:integer
 ▀▀▀
Display "prompt" in color "color" and get an integer formatted string from the user,
assigning it to "var" (11 characters maximum, valid characters 0-9)
 See also : InputInputCC InputDate InputMoney InputStr
 InputText InputTime InputYN

 INPUTMONEY prompt:string, var:string, color:integer
 ▀▀▀
Display "prompt" in color "color" and get a money formatted string from the user,
assigning it to "var" (13 characters maximum, valid characters 0-9 $.)
 See also : InputInputCC InputDate InputInt InputStr
 InputText InputTime InputYN

 INPUTSTR...
 ▀▀▀▀▀▀▀▀▀▀▀
 Usage :

INPUTSTR prompt:string, var:string, color:integer, len:integer, valid:string,
flags:string
Display "prompt" in color "color" and get a string (maximum length "len", valid
characters "valid", flags "flags") from the user, assigning it to "var"
 valid length : 1-256
 valid characters : any string
 valid flags : ECHODOTS
 FIELDLEN
 GUIDE
 UPCASE
 STACKED
 ERASELINE
 NEWLINE
 LFBEFORE
 LFAFTER
 WORDWRAP
 NOCLEAR
 HIGHASCII
 AUTO
 YESNO
 See also : InputInputCC InputDate InputInt InputMoney
 InputText InputTime InputYN

 INPUTTEXT prompt:string, var:string, color:integer, len:integer

▀▀▀
▀▀
Display "prompt" in color "color" and get a string (maximum length "len") from the
user, assigning it to "var"
 See also : InputInputCC InputDate InputInt InputMoney
 InputStr InputTime InputYN

 INPUTTIME prompt:string, var:string, color:integer
 ▀▀
Display "prompt" in color "color" and get a time formatted string from the user,
assigning it to "var" (8 characters maximum, valid characters 0-9 :)
 See also : Input InputCC InputDate InputInt InputMoney
 InputStr InputText InputYN

 INPUTYN prompt:string, var:string, color:integer
 ▀▀▀
Display "prompt" in color "color" and get a yes/no response from the user, assigning
it to "var" (1 characters maximum, valid characters determined by language)
 See also : InputInputCC InputDate InputInt InputMoney
 InputStr InputText InputTime

 JOIN conf:integer
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Performs a join conference command, passing it "conf" as arguments
 See also : ConfSel ConfSys ConfMwCurConf ConfExp
 CurConf ConfFlag ConfUnFlag ConfAlias LastIn
 ConfReg

 KBDCHKOFF
 ▀▀▀▀▀▀▀▀▀
Turn off keyboard time out checking

 KBDCHKON
 ▀▀▀▀▀▀▀▀
Turn on keyboard time out checking

 KBDFILE file:string
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Stuff the keyboard buffer with the contents of file "file"
 See also : KbdBufSize PPLBufSize KbdFlush KbdStuff KbdString
 KbdFileUsed MdmFlush KeyFlush KbdFlush

 KBDSTUFF str:string
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Stuff the keyboard buffer with the contents of "str"
 See also : KbdBufSize PPLBufSize KbdFlush KbdFile KbdString
 KbdFileUsed MdmFlush KeyFlush KbdFlush

 LET var:multitype = EXP
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Evaluate expression "EXP", convert and assign to "VAR"
NOTE: LET is the only optional keyword. If no keyword is found, LET is assumed.
There are certain circumstances where it may be required, such as assignment to a
variable named the same as a statement. PRINT, for example, would require a line
such as LET PRINT = TRUE instead of just PRINT = TRUE)

 LOG str:string, just:boolean
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Write string "str" to the callers log, left justified if "just" is TRUE

 MESSAGE...
 ▀▀▀▀▀▀▀▀▀▀
 Usage :
MESSAGE conf:integer, to:string, from:string, subject:string, sec:string,
msgdate:date, retreceipt:boolean, echo:boolean, file:string

Write a message in conference "conf", to user "to" (empty string defaults to current
caller), from user "from" (empty string defaults to current caller), subject "subject",
security in "sec" (N or R; N is the default), pack out date in "msgdate" (0 for no pack
out date), "retreceipt" True if return receipt desired, "echo" TRUE if message should
be echoed, and "file" is the filename to use for the message text

 MORE
 ▀▀▀▀
Displays a MORE? prompt
 See also : Wait Delay

 MOUSEREG num,x1,y1,x2,y2,fontX,fontY,invert,clear,text
 ▀▀
Set up a RIP mouse region on the remote terminal.
 num = Is the RIP region number
 x1,y1 = The (X,Y) coordinates of the upper-left of the region
 x2,y2 = The (X,Y) coordinates of the lower-right of the region
 fontX = The width of each character in pixels
 fontY = The height of each character in pixels
 invert = A boolean flag (TRUE to invert the region when clicked)
 clear = A boolean flag (TRUE to clear and full screen the text window)
 text = Text that the remote terminal should transmit when the region
 is clicked
 See also : GrafMode

 MPRINT str:string[, str:string...]
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Display one or more string expressions on the callers screen only (this statement
does not send anything to the BBS screen)
 See also : MPrintLn Print PrintLn SPrint SPrintLn

 MPRINTLN [str:string[, str:string...]]
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Display zero or more string expressions on the callers screen only and follow with a
newline (this statement does not send anything to the BBS screen)
 See also : MPrint Print PrintLn SPrint SPrintLn

 NEWLINE
 ▀▀▀▀▀▀▀
Write a newline to the display
 See also : NewLines FreshLine

 NEWLINES var
 ▀▀▀▀▀▀▀▀▀▀▀▀
Write "var" newlines to the display
 See also : NewLine FreshLine

 OPENCAP captfile:string, error:boolean
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Open "captfile" and capture all screen output to it.
If an error occurs creating or opening "captfile", "error" is set to TRUE, otherwise
"error" is set to FALSE.
 See also : CloseCap

 OPTEXT str:string
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Writes string "str" into the @OPTEXT@ macro

 PAGEOFF
 ▀▀▀▀▀▀▀
Turn off the SysOp paged indicator (flashing p on status line)
 See also : PageOn

 PAGEON
 ▀▀▀▀▀▀
Turn on the SysOp paged indicator (flashing p on status line)
 See also : PageOff

 POKEB addr:integer, val:integer
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Assign the value "val" (0-255) to memory address "addr" (POKE is a synonym)
 See also : PeekB PeekDW PeekW PokeW PokeDW

 POKEDW addr:integer, val:integer
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Assign the value "val" (-2147483648 - +2147483647) to memory address "addr"
 See also : PeekB PeekDW PeekW PokeB PokeW

 POKEW addr:integer, val:integer
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Assign the value "val" (0-65535) to memory address "addr"
 See also : PeekB PeekDW PeekW PokeB PokeDW

 POP var[,var...]
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Pop values (previously pushed onto the stack) into a list of variables
 See also : Push

 PRFOUND & PRFOUNDLN
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
These work just like Print and PrintLn but, if the last SearchFind statement resulted in
a match, it will automatically highlight found words.
 See also : SearchFind

 PRINT str:string[, str:string...]
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Display one or more string expressions
 See also : MPrint MPrintLn PrintLn SPrint SPrintLn

 PRINTLN [str:string[, str:string...]]
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Display zero or more string expressions and follow with a newline
 See also : MPrint MPrintLn Print SPrint SPrintLn

 PROMPTSTR prompt:integer, var:string, len:integer, valid:string, flags:integer

▀▀▀
▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Display PCBTEXT entry "prompt" and get a string (maximum length "len", valid
characters "valid", flags "flags") from the user, assigning it to "var"
 valid length: 1-256
 valid characters : any string
 valid flags : ECHODOTS
 FIELDLEN
 GUIDE
 UPCASE
 STACKED
 ERASELINE
 NEWLINE
 LFBEFORE
 LFAFTER
 WORDWRAP
 NOCLEAR
 HIGHASCII
 AUTO
 YESNO
 See also : DispText

 PUSH var[,var...]
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Push a list of evaluated expressions onto the stack
 See also : Pop

 PUTUSER
 ▀▀▀▀▀▀▀
Write the information from the predefined variables (U_...) to the user record
This statement is only intended to update user information if a successful GetUser or
GetAltUser was issued previously. This was done to ensure that information for the
current user wasn't written to another user or vice versa.
 See also : GetUser

 QUEST nr:integer
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Do script questionnaire "nr"

 RDUNET node:integer
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Read information from USERNET.XXX for node "node"
 See also : RdUsys WrUnet WrUsys

 RDUSYS
 ▀▀▀▀▀▀
Reads a USERS.SYS file, if present, and updates the users record
 See also : RdUnet WrUnet WrUsys

 RENAME oldname:string, newname:string
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Rename file "oldname" to "newname"

 See also : Delete Copy Append Exist FileInf

 RESETDISP
 ▀▀▀▀▀▀▀▀▀
Reset the display after an user abort

 RESTSCRN
 ▀▀▀▀▀▀▀▀
Restore the screen from the buffer previously saved with SaveScrn
 See also : SaveScrn

 RETURN
 ▀▀▀▀▀▀
Return to the statement after the last GoSub or, if no GoSub is waiting for a RETURN,
End the PPE

 SAVESCRN
 ▀▀▀▀▀▀▀▀
Save the current screen in a buffer for later restoration with the RestScrn
 See also : RestScrn

 SCRFILE lineVar, filenameVar
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Find a file name and line number that is currently on the screen.
lineVar= Should be set before calling to the line number to start searching on (1 is
the top line); Will be set to the line number where the file name was found or 0 if no
file name was found filenameVar = Will be set to the file name if one is found on
screen
 See also : ScrText

 SENDMODEM str:string
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Send the text in "str" out to the modem

 SEARCHINIT criteria, caseSensitive
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Initialize search parameters for a faster BOYER-MOORE search algorithm.
criteria = A string expression with the search criteria in the same format used by
PCBoard (ie, "THIS & THAT | BOB") caseSensitive = A boolean flag (TRUE to force a
case sensitive search, FALSE otherwise)
 See also : SearchFind PRFound/PRFoundLn SearchStop

 SEARCHFIND bufferExpr, foundVar
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Execute a BOYER-MOORE search on a text buffer using criteria previously defined
with a SearchInit statement.
bufferExpr = The buffer to search foundVar = Set to TRUE if bufferExpr contains the
search criteria, FALSE otherwise
 See also : SearchInit PRFound/PRFoundLn SearchStop

 SEARCHSTOP
 ▀▀▀▀▀▀▀▀▀▀
Clears out previously entered search criteria. It takes no parameters.

 See also : SearchInit SearchFind PRFound/PRFoundLn

 SHELL com:boolean, code:integer, prog:string, arg:string
 ▀▀
Shell (via COMMAND.COM if "com" is TRUE) to program/command "prog" with
arguments "arg", saving the return value in "var"
NOTE: If "com" is TRUE, the value assigned to "var" will be the return code of
COMMAND.COM, not "prog")
 See also : Call

 SHOWOFF
 ▀▀▀▀▀▀▀
Turns off display of information to the screen
 See also : ShowStat ShowOn

 SHOWON
 ▀▀▀▀▀▀
Turns on display of information to the screen
 See also : ShowStat ShowOff

 SORT sortArry, pointerArray
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Sort the contents of an array into a pointer array.
sortArray = The data to sort (Any type may be used for this array)
pointerArray = An integer array which will be used as an array of pointers into
sortArray for accessing sortArray in sorted order (This array should be of type
INTEGER)

Note that sortArray and pointerArray are restricted to one (1) dimensional arrays.
The following is an example of displaying an array in unsorted and sorted order:
STRING s(999) ; Remember that arrays are 0-based, so these statements
INTEGER p(999) ; will allocate 1000 elements each
; Do something here to read data into s
SORT s,p
INTEGER i
FOR i = 0 TO 999 ; This loop will display in unsorted order
 PRINTLN s(i)
NEXT
FOR i = 0 TO 999 ; This loop will display in sorted order
 PRINTLN s(p(i))
NEXT

 SOUND freq:integer
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Turn on the BBS PC speaker at the frequency (1-65535) specified by "freq" (or turn it
off if the frequency is 0)

 SPRINT str:string[, str:string...]
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Display one or more string expressions on the BBS screen only (this statement does
not send anything to the modem)
 See also : MPrintLn MPrint Print PrintLn SPrintLn

 SPRINTLN [str:string[, str:string...]]
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Display zero or more string expressions on the BBS screen only and follow with a
newline (this statement does not send anything to the modem)
 See also : MPrintLn MPrint Print PrintLn SPrint

 STARTDISP mode:integer
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Start display monitoring in mode "mode"
 valid modes : NC
 FNS
 FCL

 STOP
 ▀▀▀▀
Abort PPE execution without appending answers (channel 0) to the answer file
 See also : End

 TOKENIZE str:string
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Tokenize string "string" into individual items separated by semi-colons or spaces
 See also : GetToken TokenStr TokCount

 TPAGET keyWord, infoVar
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Get static information from a named TPA in string format.
keyword = The keyword of the TPA to use
infoVar = The variable into which to store the information
 See also : Psa TPAPut TPACGet TPACPut TPARead
 TPAWrite TPACRead TPACWrite

 TPAPUT keyWord, infoExpr
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Put static information to a named TPA in string format.
keyword = The keyword of the TPA to use
infoExpr = The expression to write to store the TPA
 See also : Psa TPACGet TPACPut TPARead
 TPAWrite TPACRead TPACWrite TPAGet

 TPACGET keyWord, infoVar, confNum
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Get information from a named TPA for a specified conference in string format.
keyword = The keyword of the TPA to use
infoVar = The variable into which to store the information
confNum = The conference number for which to retrieve information
 See also : Psa TPAPut TPACPut TPARead
 TPAWrite TPACRead TPACWrite TPAGet

 TPACPUT keyWord, infoExpr, confNum
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Put information to a named TPA for a specified conference in string format.
keyword = The keyword of the TPA to use
infoExpr = The expression to write to store the TPA

confNum = The conference number for which to retrieve information
 See also : Psa TPAPut TPACGet TPARead
 TPAWrite TPACRead TPACWrite TPAGet

 TPAREAD keyWord, infoVar
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Get static information from a named TPA.
keyword = The keyword of the TPA to use
infoVar = The variable into which to store the information
 See also : Psa TPAPut TPACGet TPACPut
 TPAWrite TPACRead TPACWrite TPAGet

 TPAWRITE keyWord, infoExpr
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Put static information to a named TPA.
keyword = The keyword of the TPA to use
infoExpr = The expression to write to store the TPA
 See also : Psa TPAPut TPACGet TPACPut TPARead
 TPACRead TPACWrite TPAGet

 TPACREAD keyWord, infoVar, confNum
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Get information from a named TPA for a specified conference.
keyword = The keyword of the TPA to use
infoVar = The variable into which to store the information
confNum = The conference number for which to retrieve information
 See also : Psa TPAPut TPACGet TPACPut TPARead
 TPAWrite TPACWrite TPAGet

 TPACWRITE keyWord, infoExpr, confNum
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Put information to a named TPA for a specified conference.
keyword = The keyword of the TPA to use
infoExpr = The expression to write to store the TPA
confNum = The conference number for which to retrieve information
 See also : Psa TPAPut TPACGet TPACPut TPARead
 TPAWrite TPACRead TPAGet

 VARADDR var1:multitype, var2:integer
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Assign the address (segment and offset) of "var1" to "var2"
 See also : VarSeg VarOff MkAddr

 VAROFF var1:multitype, var2:integer
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Assign the offset address of "var1" to "var2"
 See also : VarSeg VarAddr MkAddr

 VARSEG var1:multitype, var2:integer
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Assign the segment address of "var1" to "var2"
 See also : VarOff VarOff MkAddr

 WAIT
 ▀▀▀▀
Displays a PRESS ENTER TO CONTINUE? prompt
 See also : More Delay Wait For

 WAITFOR prompt:string, var:boolean, time:integer
 ▀▀
Wait up to "time" seconds for the string "prompt", assigned TRUE to "var" if the string
is found in the time specified or FALSE if the string is not found (WAIT FOR is a
synonym)
 See also : Wait

 WHILE...
 ▀▀▀▀▀▀▀▀
 Usage 1:
 WHILE (exp:boolean) statement ...
While "exp" is true execute statement; when "exp" is false execute following
statements

 Usage 2:

 WHILE (exp) DO
 ...
 ENDWHILE

WHILE - While "exp" is true execute statement(s); when "exp" is false transfer control
to the first statement following the ENDWHILE statement (requires DO [or THEN]
after the expression)
ENDWHILE - Transfers control to the closest WHILE statement and marks the end of
the WHILE loop (END WHILE is a synonym)
 See also : If..Then For...Next

 WRUNET...
 ▀▀▀▀▀▀▀▀▀
 Usage :
WRUNET node:integer, nodestat:string, nodeusername:string,newnodecity:string,
newoptext:string,broacasttext:string

Write information to USERNET.XXX for node "node", where "nodestat" is the new
node status, "nodeusername" is the new node user name, "newnodecity" is the new
node city, "newoptext" is the new node operation text, and "broadcasttext" is
broadcast text
 See also : RdUnet RdUsys WrUsys

 WRUSYS
 ▀▀▀▀▀▀
Writes (creates) a USERS.SYS file which can be used by a SHELLed application
 See also : RdUnet RdUsys WrUnet

 BREAK
 ▀▀▀▀▀
Can be used to break out of a WHILE or FOR loop without the use of a GOTO
statement
 See also : Continue Quit

 QUIT
 ▀▀▀
Can be used to break out of a WHILE or FOR loop without the use of a GOTO
statement (alias for BREAK)
 See also : Continue Quit

 CONTINUE
 ▀▀▀▀▀▀▀▀
Can be used to abort the current iteration of a WHILE or FOR loop and resume with
the next iteration of the loop
 See also : Quit Break Loop

 LOOP
 ▀▀▀▀

Can be used to abort the current iteration of a WHILE or FOR loop and resume with
the next iteration of the loop (alias for CONTINUE)
 See also : Quit Break Continue

 FFLUSH chnl:integer
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
flush a specified channels changes to disk
 See also : FClose

 FSEEK chnl:integer, byte:integer, position:integer
 ▀▀
Position to any random location within a file
bytes is the number of bytes to move (+/-) relative to position
position is the base location to start the seek from
 SEEK_SET (0) for the beginning of the file
 SEEK_CUR (1) for the current file pointer location
 SEEK_END (2) for the end of the file
 See also : FRewind

 FREAD chnl:integer, var:multitype, size:integer
 ▀▀
Read binary data from a file
var is the variable into which data should be read
size is the size of data to read into var (0 - 2048)
 See also : FGet

 FWRITE chnl:integer, exp:multitype, size:integer
 ▀▀
Write binary data to a file
exp is the expression whose result should be written
size is the size of data to write to var
 See also : FPut FPutPad FPutLn

 FDEFIN chnl:integer
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Specify a default input file channel (used to speed up file input)
 See also : FOpen

 FDEFOUT chnl:integer
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Specify a default output file channel (used to speed up file output)
 See also : FOpen

 FDGET var:multitype
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Default channel input statement: use the exact same arguments as FGet except a
channel parameter (the channel specified by FDefIn is assumed)
 See also : FDPut FDPutPad FDPutLn FDRead FDWrite

 FDREAD var:multitype, size:integer
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Default channel input statement: use the exact same arguments as FRead except a
channel parameter (the channel specified by FDefIn is assumed)

 See also : FDPut FDPutPad FDPutLn FDGet FDWrite

 FDPUT str:string[, str:string...]
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Default channel output statement: use the exact same arguments as FPut except a
channel parameter (the channel specified by FDefOut is assumed)
 See also : FDRead FDPutPad FDPutLn FDGet FDWrite

 FDPUTLN str:string[, str:string...]
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Default channel output statement: use the exact same arguments as FPutLn except a
channel parameter (the channel specified by FDefOut is assumed)
 See also : FDRead FDPutPad FDPut FDGet FDWrite

 FDPUTPAD str:string, len:integer
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Default channel output statement: use the exact same arguments as FPutPad except
a channel parameter (the channel specified by FDefOut is assumed)
 See also : FDRead FDPutLn FDPut FDGet FDWrite

 FDWRITE exp:multitype, size:integer
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Default channel output statement: use the exact same arguments as FWrite except a
channel parameter (the channel specified by FDefOut is assumed)
 See also : FDRead FDPutPad FDPut FDGet FDPutPad

 REDIM
 ▀▀▀▀▀
Dynamically redimension an array at run-time
To use it you must declare the array in advance with the number subscripts desired.
This allows the compiler to perform it's standard error checking on subscripts. For
example:
STRING s(1,1,1)
REDIM s,5,5,5
LET s(4,4,4) = "Hello, World!"
PRINTLN s(4,4,4)
If an attempt is made to redimension an array with a different number of dimensions,
an error or warning (as appropriate) will be generated.
 See also : Compilation Options

 APPEND srcfile:string, destfile:string
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Append the contents of one file to another file.
 ie:
APPEND "SRCFILE","DSTFILE"
 See also : Delete Copy Exist FileInf Rename

 COPY srcfile:string, destfile:string
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Copy the contents of one file to another file.
 ie:

COPY "SRCFILE","DSTFILE"

 See also : Delete Append Exist FileInf Rename

 LASTIN conf:integer
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Set the users last conference in value. It can be used during the logon process to
force the user into a particular conference at start up (for example, from a logon
script).
 See also : ConfSel ConfSys ConfMw CurConf ConfExp CurConf
 ConfFlag ConfUnFlag Join ConfAlias ConfReg

 FLAG filepath:string
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Allow flagging files for download directly from a PPE.
 ie:
FLAG "C:\PATH\FILENAME.ZIP" ; Or whatever file name desired
Note that FLAG does not attempt to honor restrictions in the FSEC and/or
DLPATH.LST files. This allows you to flag up any file desired.
 See also : FlagCnt Download

 DOWNLOAD cmd:string
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Downloading files from PPL.
 ie:

DOWNLOAD "CMD;CMD;CMD"

The string passed to DOWNLOAD is a list of commands in the same format as what a
user would type after a D or DB command.
If a file name for download is specified here it must be downloadable according to the
criteria established in the FSEC and DLPATH.LST files.
If it is necessary to download a file not normally available via the FSEC and/or
DLPATH.LST files the FLAG statement may be used to force it into the list of files to
download.
 See also : Flag

 FLAGCNT()
 ▀▀▀▀▀▀▀▀▀
Return the number of files flagged for download.
 See also : Flag

 WRUSYSDOOR str:string
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Write a USERS.SYS file with a TPA record for a DOOR application.
 ie:

WRUSYSDOOR "DOORNAME"
 See also : WrUsys

 KBDSTRING str:string
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Stuff strings to the keyboard (just like KbdStuff except 'keystrokes' are echoed to the
display)

 See also : KbdBufSize PPLBufSize KbdFlush KbdStuff KbdFile
 KbdFileUsed MdmFlush KeyFlush KbdFlush

 KBDFLUSH
 ▀▀▀▀▀▀▀▀
Flush the local keyboard buffer and any stuffed keystroke buffers. It takes no
arguments.
 See also : KbdBufSize PPLBufSize KbdFlush KbdStuff KbdFile
 KbdFileUsed MdmFlush KbdFlush KbdString

 MDMFLUSH
 ▀▀▀▀▀▀▀▀
Flush the incoming modem buffer. It takes no arguments.
 See also : KbdBufSize PPLBufSize KbdFlush KbdStuff KbdFile
 KbdFileUsed KeyFlush KbdFlush KbdString

 KEYFLUSH
 ▀▀▀▀▀▀▀▀
Flush both the local buffers and the incoming modem buffer. It takes no arguments.
 See also : KbdBufSize PPLBufSize KbdFlush KbdStuff KbdFile
 KbdFileUsed MdmFlush KbdFlush KbdString

 ALIAS yesno:boolean
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Allow PPE control of whether or not the user is using an alias
 See also : PSA(1) UserAlias

 ALIAS() :BOOLEAN
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Return the users current ALIAS setting (TRUE = alias use on, FALSE = alias use off)
 See also : TPAGet

 CONFALIAS()
 ▀▀▀▀▀▀▀▀▀▀▀
Return TRUE if the current conference is configured to allow aliases v
 See also : ConfSel ConfSys ConfMw CurConf ConfExp CurConf
 ConfFlag ConfUnFlag Join LastIn ConfReg

 USERALIAS() :BOOLEAN
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Return TRUE if the current user is allowed to use an alias
 See also : Alias

 LANG
 ▀▀▀▀
Change the language in use by the current user.
 ie:
LANG langNum
 See also : LangExt

 ADJBYTES bytes:integer
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Adjust the users total and daily download
To subtract bytes use a negative number for bytes. To add bytes use a positive
number.
 See also : AdjDBytes AdjTBytes AdjTFiles

 ADJDBYTES bytes:integer
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Adjust the users daily download bytes.
To subtract bytes use a negative number for bytes. To add bytes use a positive
number.
 See also : AdjTBytes AdjTFiles AdjBytes

 ADJTBYTES bytes:integer
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Adjust the users total download bytes.
To subtract bytes use a negative number for bytes. To add bytes use a positive
number.
 See also : AdjDBytes AdjTFiles AdjBytes

 ADJTFILES files:integer
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Adjust the users total download files.
To subtract files use a negative number for files. To add files use a positive number.
 See also : AdjDBytes AdjTBytes AdjBytes

 PUTALTUSER
 ▀▀▀▀▀▀▀▀▀▀
Put user information. It is merely an alias for PutUser and may be used anywhere
that PUTUSER would be used.
 See also : GetAltUser

 GETALTUSER user:integer
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Get the information for an alternate user.
It will fill the user variables with information from the specified user record as well as
redirect user statements and functions.
 ie:
GETALTUSER userRecordNumber
If an attempt is made to get a record number that doesn't exist, the user functions
will revert to the current user and the user variables will be invalidated as though no
GetUser/GetAltUser statement had been issued (though they will continue to maintain
any value held). PutUser/PutAltUser should be issued to commit any variable changes
to the user record. Additionally, there is at least one statement that will not affect
alternate users: AdjTime. It is restricted to the current user online. Also, if the
alternate user is online, changes to the record won't take hold until after the user has
logged off. Also, if there is not enough memory available (primarily for the last
message read pointers) this statement will fail.
 See also : PutAltUser

 CURUSER() :INTEGER
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Determine what users information, if any, is available via the user variables. It takes
no arguments and returns one of the following values:
NO_USER (-1) - User variables are currently undefined
CUR_USER (0) - User variables are for the current user
Other - The record number of an alternate user for whom user
variables are defined

 Compilation Directives
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
 ;$INCLUDE:
Source files can be included from other source files. This is accomplished with a
compiler directive in a comment like this:
 ;$INCLUDE:FILESPEC.EXT

Note that the first character need not be the semi-colon. An apostrophe ['] or asterisk
[*] may also be used where appropriate.
This allows you to include subroutines from a source code 'library'. This should help in
starting reusable code fragments. When the file is included, it is compiled as though it
were in the main source file. For example:
 FOO.INC

 :subroutine
 PRINTLN "Hello!"
 RETURN

 FOO.PPS

 PRINTLN "Running FOO.PPS"
 GOSUB subroutine
 END ' This line is important!
 *$INCLUDE:FOO.INC

Note the use of END in FOO.PPS. It is important in this case to ensure that you don't
accidentally run subroutine twice by just falling through to it.

 ;$USEFUNCS
Allow you to specifiy that you want to use user-defined functions and procedures.
This makes the code more flexible by allowing you to put your main code (code
between Begin and End) anywhere in your program (usefull if you have to incude
some user-defined functions with an include directive at the beginning of your code)

 @Xnn Color Codes
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
PCBoard defines some macros to change color if user has ANSI capabilities.
If user doesn't support ANSI, PCB just skip those codes. It is a good way to colorize
your screens and prompt because you don't have to check the ANSI flag, PCB deal
with it automatically.
Color codes are made of 4 bytes. the first byte is used to enter in macro mode. The
second indicates that we want to pass a color code. Next byte is the background color
and the last is the foreground color.

 BackGround codes :

 0 - Black
 1 - Blue
 2 - Green
 3 - Cyan
 4 - Red
 5 - Magenta
 6 - Brown
 7 - LightGray
 8 - Black
 9 - Blinking foreground on Blue background
 A - Blinking foreground on Green background
 B - Blinking foreground on Cyan background
 C - Blinking foreground on Red background
 D - Blinking foreground on Magenta background
 E - Blinking foreground on Brown background
 F - Blinking foreground on LightGray background

 Foreground codes :

 0 - Black
 1 - Blue
 2 - Green
 3 - Cyan
 4 - Red
 5 - Magenta
 6 - Brown
 7 - LightGray
 8 - DarkGray
 9 - LightBlue
 A - LightGreen
 B - LightCyan
 C - LightRed
 D - LightMagenta
 E - Yellow
 F - White

 GO ...
 ▀▀▀▀▀▀
 See : Go Sub Go To

 ... TO
 ▀▀▀▀▀▀
 See : Go To For...To...Next

 PROCEDURE
 ▀▀▀▀▀▀▀▀▀
[DECLARE] PROCEDURE proc([TYPE var1 [VAR]],...)

The keyword PROCEDURE is used in conjonction with the keyword DECLARE in the
declaration of a user-defined procedure...
The optionnal VAR keyword tells PPL to copy the contents of the local variable back
into the original variable when the procedure is finished processing.

The compiler directive ";$USEFUNCS" may be used in order to allow your main code
(code between BEGIN & END) to be located anywhere within your file...
Example :

 ;$USEFUNCS
 DECLARE PROCEDURE proc1(INTEGER i, STRING str, VAR INTEGER j)
 INTEGER int1,int2
 STRING s1
 BEGIN
 int1 = 1
 int2 = 2
 s1 = "HELLO"
 proc1(int1,s1,int2)
 PRINTLN "int1 =",int1
 PRINTLN "int2 =",int2
 PRINTLN "s1 =",s1
 END
 PROCEDURE proc1(INTEGER i,STRING str, VAR INTEGER j)
 PRINTLN "I'm in proc1"
 LET i = 30
 LET j = 15
 ENDPROC
 See also : Function

 FUNCTION
 ▀▀▀▀▀▀▀▀
[DECLARE] FUNCTION func(TYPE var1, ...) TYPE

The keyword PROCEDURE is used in conjonction with the keyword FUNCTION in the
declaration of a user-defined function...
The compiler directive ";$USEFUNCS" may be used in order to allow your main code
(code between BEGIN & END) to be located anywhere within your file...
The big difference between functions and procedures is that functions return a value.
To assign the return value inside a function, simple use the name of the function just
like a variable. You do not need to declare this variable, it is done for you. When the
function is finished executing the value in the return variable will be made available
as the return value.
Note that function calls can take place anywhere inside of an expression as well as
stand-alone statements. This can be useful in situations when the functions return
value is not needed, but the functions side effects are.
Example :

 ;$USEFUNCS
 DECLARE FUNCTION Xto_theY(INTEGER x, INTEGER y) INTEGER
 DECLARE FUNCTION square(INTEGER x) INTEGER
 FUNCTION Xto_theY(INTEGER x, INTEGER y) INTEGER

INTEGER i
Xto_theY = x
for i = 2 to y
 Xto_theY = Xto_theY * x
next i

 ENDFUNC
 FUNCTION square(INTEGER x) INTEGER
 square = x * x
 ENDFUNC

 BEGIN
 PRINTLN "4 to the 3rd power = ",Xto_theY(4,3)
 PRINTLN "4 squared = ",square(4)
 END
 See also : Procedure

 DECLARE
 ▀▀▀▀▀▀▀
 See : Function Procedure

 SELECT CASE
 ▀▀▀▀▀▀▀▀▀▀▀
 SELECT CASE var
 CASE const1 [, const2..const3 [, expr]]
 .
 .
 .
 DEFAULT (or CASE ELSE)
 END SELECT
The SELECT CASE construct allows you to organize multiple execution paths into a
clean, easy to read format.
Each CASE contains one or more expressions delimited by commas. Each CASE
expression is compared to the SELECT CASE expression logically. If it is TRUE the
body of the CASE is executed. The CASE body can contain as many statements as
needed, including function calls. Note that ranges include the boundry values. eg
11..35 includes 11 and 35.
The DEFAULT case will be executed when none of the other CASE expressions
evaluate to TRUE. For BASIC programmers, the CASE ELSE is also valid instead of
DEFAULT.

Example :
 INTEGER i
 LET i = 3
SELECT CASE (i)
 CASE 1
 PRINTLN "i = 1"
 proc1(i)
 CASE 2,6,10
 PRINTLN "i is 2,6 or 10"
 proc2(i)
 CASE 3
 PRINTLN "i is 3"
 CASE 11..35
 PRINTLN "i is between 11 and 35"
 CASE 50..60,64,78

 PRINTLN "I is between 50 and 60 or 64 or 78
 DEFAULT
 PRINTLN "i is not a valid value"
END SELECT

 DBASE III FUNCTIONS & STATEMENTS
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
PPL provide a load of functions & statements to access DBase III files...

 STATEMENTS
 ──────────
 DCREATE channel,name,exclusive,fieldInfo ; create DBF file
 DOPEN channel,name,exclusive ; open DBF file
 DCLOSEchannel ; close DBF file
 DSETALIAS channel,name ; set DBF alias
 DPACK channel ; pack DBF file
 DLOCK channel ; lock DBF file
 DLOCKFchannel ; lock DBF file (same as DLOCK)
 DLOCKRchannel,recno; lock a record
 DLOCKGchannel,recnos,count ; lock a group of records
 DUNLOCK channel ; unlock any current locks
 DNCREATE channel,name,expression; create NDX file
 DNOPENchannel,name ; open NDX file
 DNCLOSE channel,name ; close NDX file
 DNCLOSEALL channel ; close all NDX files
 DNEW channel ; start a new record
 DADD channel ; add the new record
 DAPPEND channel ; append a blank record
 DTOP channel ; go to top record
 DGO channel,recno; go to specific record
 DBOTTOM channel ; go to bottom record
 DSKIP channel,number ; skip +/- a number of records
 DBLANKchannel ; blank the record
 DDELETE channel ; delete the record
 DRECALL channel ; recall the record
 DTAG channel,name ; select a tag
 DSEEK channel,expression; string or double
 DFBLANK channel,name ; blank a named field
 DGET channel,name,var ; get a value from a named field
 DPUT channel,name,expression; put a value to a named field
 DFCOPYchannel,name,channel,name ; copy a field to a field
 DCLOSEALL; close all DBF files

 FUNCTIONS
 ─────────
 DRECCOUNT (channel) (INTEGER) ; return the number of records
 DRECNO (channel) (INTEGER) ; return the current record number
 DBOF (channel) (BOOLEAN) ; return the begin of file status
 DEOF (channel) (BOOLEAN) ; return the end of file status
 DDELETED (channel) (BOOLEAN) ; return the deleted flag
 DCHANGED (channel) (BOOLEAN) ; return the changed flag
 DFIELDS (channel) (INTEGER) ; return count of fields

 DNAME(channel,number) (STRING) ; return name of numbered field
 DTYPE(channel,name) (STRING) ; return type of named field
 DLENGTH (channel,name) (INTEGER) ; return length of named field
 DDECIMALS (channel,name) (INTEGER) ; return decimals of named field
 DSELECT (alias)(INTEGER) ; returns channel assiciated with alias
 DSEEK(channel,expression) (INTEGER) ; returns error status (0|1)
; or seek success (0 = Error
; 1 = success, 2 = following record
; 3 = end of file)
 DGETALIAS (channel) (STRING) ; return the current alias
 DCLOSEALL (BOOLEAN) error status ; close all DBF files
 DOPEN(channel,name,exclusive)(BOOLEAN) error ; open DBF file
 DCLOSE (channel) (BOOLEAN) error status ; close DBF file
 DSETALIAS (channel,name) (BOOLEAN) error status ; set DBF alias
 DPACK(channel) (BOOLEAN) error status ; pack DBF file
 DLOCK(channel) (BOOLEAN) error status ; lock DBF file
 DLOCKR (channel,recno) (BOOLEAN) error status ; lock a record
 DUNLOCK (channel) (BOOLEAN) error status ; unlock any current locks
 DNOPEN (channel,name) (BOOLEAN) error status ; open NDX file
 DNCLOSE (channel,name) (BOOLEAN) error status ; close NDX file
 DNCLOSEALL(channel) (BOOLEAN) error status ; close all NDX files
 DNEW (channel) (BOOLEAN) error status ; start a new record
 DADD (channel) (BOOLEAN) error status ; add the new record
 DAPPEND (channel) (BOOLEAN) error status ; append a blank record
 DTOP (channel) (BOOLEAN) error status ; go to top record
 DGO (channel,recno) (BOOLEAN) error status ; go to specific record
 DBOTTOM (channel) (BOOLEAN) error status ; go to bottom record
 DSKIP(channel,number) (BOOLEAN) error status ; skip +/- a number of records
 DBLANK (channel) (BOOLEAN) error status ; blank the record
 DDELETE (channel) (BOOLEAN) error status ; delete the record
 DRECALL (channel) (BOOLEAN) error status ; recall the record
 DTAG (channel,name) (BOOLEAN) error status ; select a tag
 DFBLANK (channel,name) (BOOLEAN) error status ; blank a named field
 DGET (channel,name) (STRING) ; get a value from a named field
 DPUT (channel,name,expression)(BOOLEAN) error ; put a value to a named field
 DFCOPY (channel,name,channel,name)(BOOLEAN) error; copy a field to a field
 DERR (channel) (BOOLEAN) ; return error flag for channel
 DERRMSG (errcode) (STRING) ; returns last DBase error text.

CAUTION: DBase functions that return the error status actually return !ERROR. This is
to provide a consistent way to express an error in an expression. For example:

 if (DERR (...)) println "Error!" ;DERR returns 1 or TRUE on an error.
 if (!DSEEK(...)) println "Seek failed!" ;DSEEK returns 0 or FALSE on an error.

NOTE: Where file names are used, file extensions are optional. Any extension you
provide will be ignored. DBF and IDX are the default.
 channel : Any value between 0 and 7
 name: Char string
 exclusive: Integer (TRUE || FALSE)
 fieldinfo: Character string with the following fields
 1- Field name

 2- Field Type
 C = Character
 N = Numeric
 F = Floating Point
 D = Date
 L = Logical
 M = Memo
 3- Field Length
 4- Decimal (number of digits to the right of the decimal)

EXAMPLE:
 string finfo(3)
 let finfo(0) = "First,C,20,0"
 let finfo(1) = "Last,C,20,0"
 let finfo(2) = "Phone,C,15,0"

NOTE: multiple fields require an array of strings. 1 string for each field.
expression : Character String with search criteria on a field.

EXAMPLE:
 string expr
 let expr = "First"
 recno,recnos,number,count : integers

 DRIVESPACE ()
 ▀▀▀▀▀▀▀▀▀▀▀▀▀
Usage: DRIVESPACE(drivespec) Return Val: Amount of divespace left of drive
drivespec.
Example:
 integer left
 left = DRIVESPACE("c:\")
 println "There are ",tostring(left)," bytes on drive C."
drivespec must include at least a drive letter AND a colon. Backslash is optional. With
directory specs it will work also. valid drivespecs are C: C:\ C:\PCB These will all
return drivespace left on dirve
*NOTE On LANTASTIC this will return drivespace of the current physical drive even if
it is mapped as a directory.
 See also : FileInf Delete

 SETLMR
 ▀▀▀▀▀▀
SETLMR conf#,msg#
Set the last read pointers for the specified conference.
Example :
Integer conf,msg
if(newuser == TRUE) then ; If new user
 while(conf < HICONFNUM()) DO; set all LMR's to
 join conf ; HI_MSG - 10
 SETLMR conf,HIMSGNUM()-10
 INC conf
 Endwhile
endif

If conf# is greater than the number of actual confrences conf# will default to the
highest conference number If msg# is greater than the highest message number in
that conference, it will default to the highest message number in that conference.
This could be used to set a new users mesg pointers to recent messages so they
aren't replying to 3 years old messages. A useful feature would be to get the high
conference number.
 See also : HiConfNum HiMsgNum ActMsgNum LoMsgNum

 SETENV
 ▀▀▀▀▀▀
SETENV env_var
Set an environment variable
Example:
 string s
 let s = "stan=Stan"
 SETENV s
 .
 .
 .
 if (GETENV("stan") = "Stan") then
 Println "Environment variable stan = Stan "
 Endif

Used to set DOS environment variable. This can be used for PPE's to communicate
with other PPE's. The environment variables set within PPL will NOT be available to
DOORs. Environment variables set within PPL will be cleared the next time PCBoard
recycles through DOS.
 See also : GetEnv, Shell, Call

 FCLOSEALL
 ▀▀▀▀▀▀▀▀▀
Closes all file channels
Example:
 fopen 1, "Autoexec.bat"
 fopen 2, "Config.sys"
 .
 .
 .
 fcloseall
 See also : FOpen FClose FCreate FAppend FRewind FNext

 FNEXT()
 ▀▀▀▀▀▀▀
Returns an availble file channel. -1 when none are available.
Example: 8
 println "The next available file channel is ",FNEXT()
FNEXT was created in order to better support code libraries made possible by
functions and procedures. File channel numbers can now be determined at runtime.
CAUTION: Until you actually OPEN a file FNEXT will return the same value over and
over.
chan1 = FNEXT() chan2 = FNEXT() WRONG! chan1 will equal chan2
another gotcha: FOPEN FNEXT(),blah blah

There is no way to determine what channel was used to open the file!
Here's an example of how it should be used:
chan1 = FNEXT() FOPEN chan1,...
chan2 = FNEXT() FOPEN chan2,...
 See also : FOpen FClose FCreate FAppend FRewind FCloseAll

 HICONFNUM()
 ▀▀▀▀▀▀▀▀▀▀▀
Returns the highest conference number available on the board
Example: H
 integer i
 println "The highest conference available is ",HICONFNUM()
If a conference is installed it will be counted, even if it is not being used.
 See also : SetLmr HiMsgNum ActMsgNum LoMsgNum

 OUTBYTES()
 ▀▀▀▀▀▀▀▀▀▀
Returns the number of bytes waiting in the modems output buffer Not available in
local mode.
Example:
 integer i
 println "Bytes waiting in the modem output buffer ",OUTBYTES()
 See also : InBytes MGetByte SendModem MPrint MPrintLn MdmFlush

 INBYTES()
 ▀▀▀▀▀▀▀▀▀
Returns number of bytes waiting in the modem input buffer Not available in local
mode.
Example:
 integer i
 Println "Bytes in modem input buffer = ",INBYTES()
 See also : OutBytes MGetByte SendModem MPrint MPrintLn MdmFlush

 PCBMAC()
 ▀▀▀▀▀▀▀▀
Returns a BIGSTR containing the expanded text of a PCB MACRO
Example:
 integer i,j, res
 j = PCBMAC("@Timelimit@")
 i = PCBMAC("@Timeused@")
 res = j-i
 println "You have ",res, " Minutes left"

 PCB MACROS not supported:
 @automore@ @beep@ @clreol@ @cls@ @delay@ @more@ @pause@ @poff@
@pon@ @pos@
 @qoff@ @qon@ @wait@ @who@ @x@

 CRC32()
 ▀▀▀▀▀▀▀
UNSIGNEDTYPE = CRC32(CRC_FILE,"C:\AUTOEXEC,BAT")
CRC32(CRC_STR,"Stan is super cool")
Returns an UNSIGNED value of the CRC of a file or string.

Example:
 Println "CRC on the file AUTOEXEC.BAT is", CRC32(CRC_FILE,"C:\AUTOEXEC.BAT")
The constants CRC_FILE and CRC_STR are the same as TRUE and FALSE. They were
added to make it easier to see if a file or string was being processed.

 ACTMSGNUM()
 ▀▀▀▀▀▀▀▀▀▀▀
Returns number of active messages in current conference
Example:
 integer i
 println "There are ",ACTMSGNUM()," messages in conference ",CURCONF()
 See also : Join HiConfNum LoMsgNum HiMsgNum

 STACKLEFT()
 ▀▀▀▀▀▀▀▀▀▀▀
Returns the number of bytes left on the *system* stack.
Example:
 println "There are ",STACKLEFT()," bytes left on the stack"
 ;recursive call support
 function stan(integer i,string str)
 if(stackleft() > STK_LIMIT) stan(i,"Debra")
 endfunc
This function was added to support nested and recursive function calls. Since function
calls take a lot of stack space. As of now only about 26 nested or recursive calls can
eat up the stack. This lets the programmer know when he/she is running out of stack
space as to avoid a runtime error. Both recursion and nested function calls should
check this value if more than just a few calls are to be executed. "
 See also : StackErr StackAbort

 STACKERR()
 ▀▀▀▀▀▀▀▀▀▀
Returns a boolean value which indicates a stack error has occured if TRUE.
Example:
 if (STACKERR()) then
println "An error has occured "
end
 endif
Because of the limited stack space for recursive function calls this function was
created. It allows the programmer to determine if a stack error has occured while
executing a PPE. This is in addition to the error message when the error occurs. The
only way this will be useful is if the PPL programmer has told PPL not to abort on
stack errors. PPL will *not* allow system memory to be corrupted when stack space
has been exausted. It will disallow any more function calls when there is no system
stack space left. *Note nested/recursive procedure calls are limited by heap space,
not stack space.
 See also : StackLeft StackAbort

 STACKABORT
 ▀▀▀▀▀▀▀▀▀▀
STACKABORT TRUE | FALSE
Example:
 STACKABORT TRUE ;Default is TRUE

This allows the programmer to tell the runtime module to try its best to continue
executing after a stack error has occurred. If it is passed FALSE, it will abort
execution after a stack error. If it is passed TRUE the PPE will continue to run. «
CAUTION! If you continue to execute after a stack error, program execution will be
unpredictable. PPL will not allow system memory to be corrupted because of a stack
error.
 See also : StackLeft StackErr

 DNEXT()
 ▀▀▀▀▀▀▀
Returns an available dbase file channel. -1 when none are available.
Example:
 println "The next available dbase file channel is ",DNEXT()

DNEXT was created in order to better support code libraries made possible by
functions and procedures. File channel numbers can now be determined at runtime.
CAUTION! Until you actually OPEN a file DNEXT will return the same value over and
over.
chan1 = DNEXT() chan2 = DNEXT() WRONG! chan1 will equal chan2
another gotcha: FOPEN DNEXT(),...
There is no way to determine what channel was used to open the file!
Here's an example of how it should be used:
chan1 = DNEXT() FOPEN chan1,...
chan2 = DNEXT() FOPEN chan2,...
 See also : DBase functions

 TODDATE (DATE date)
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Converts any PPL type to DDATE type.
Example:
 DATE d1
 DDATE d2
 d2 = TODDATE(d1)
This is an explicit type conversion. Implicit type conversion is also valid as with all
other PPL types.
 See also : Date DDate data type MkDate

 FREALTUSER
 ▀▀▀▀▀▀▀▀▀▀
Since only one GETALTUSER can be active at one time, FREALTUSER can allow other
processes which need to use GETALTUSER (such as the MESSAGE commend) to do
so.
Example:
 string name
 GETALTUSER 20
 name = U_NAME()
 FREALTUSER
 message 1,name,...
 See also : GetAltUser GetUser PutAltUser PutUser

 ACCOUNTING
 ▀▀▀▀▀▀▀▀▀▀

Several functions and statements have been added to support PCBoard accounting
features. Also, many system constants have been added to make using these funtions
and statements easier for the PPL programmer.

CONSTANTS
─────────
There are three new functions which return accounting information. Each function will
return a value based on a parameter passed to it. Several constants have been added
to make accessing these values easier. The following list details these consts and
what they are used for.
for use with PCBACCOUNT() only!
 val const Associated value

 0 NEWBALANCE Credits Given to a new user account
 1 CHRG_CALL Credits charged for a call
 2 CHRG_TIME Credits charged for time used (in minutes)
 3 CHRG_PEAKTIME Credits charged for peak time used
 4 CHRG_CHAT Credits charged for chat session
 5 CHRG_MSGREAD Credits charged for reading a message
 6 CHRG_MSGCAPCredits charged for capturing a message
 7 CHRG_MSGWRITE Credits charged for writing a message
 8 CHRG_MSGECHOED Credits charged for writing an echoed message
 9 CHRG_MSGPRIVATE Credits charged for writing a private message
 10 CHRG_DOWNFILE Credits charged for downloading a file
 11 CHRG_DOWNBYTES Credits charged for downloading bytes
 12 PAY_UPFILE Credits given for uploading a file
 13 PAY_UPBYTESCredits given for uploading bytes
 14 WARN_LEVEL Credit threshold for low credit warning

The following are for use with PCBACCSTAT() only!
 val constantAssociated value

 0 ACC_STAT Returns status of the "Enable Accounting"
 switch in the PWRD file. 0=Accounting
 disabled (N), 1=Tracking (T), and
 2=Enabled (Y).
 1 ACC_TIME The amount of ADDITIONAL units to charge
 per minute while in the current
 conference.
 2 ACC_MSGR The amount to charge in ADDITION for each
 message read in the current conference.
 3 ACC_MSGW The amount to charge in ADDITION for each
 message entered in the current conference.

The following are for use with ACCOUNT(), ACCOUNT and RECORDUSAGE only!

 val constant description example
 --
 0 START_BAL Users starting balance.
 1 START_SESSION Users starting balance for this session
 2 DEB_CALL Debit for this call
 3 DEB_TIME Debit for time on

 4 DEB_MSGREADDebit for reading message
 5 DEB_MSGCAP Debit for capturing a message
 6 DEB_MSGWRITE Debit for writing a message
 7 DEB_MSGECHOED Debit for echoed message
 8 DEB_MSGPRIVATE Debit for writing private message
 9 DEB_DOWNFILE Debit for downloading a file
 10 DEB_DOWNBYTES Debit for downloading bytes
 11 DEB_CHAT Debit for chat
 12 DEB_TPU Debit for TPU
 13 DEB_SPECIALDebit special
 14 CRED_UPFILECredit for uploading a file
 15 CRED_UPBYTES Credit for uploading bytes
 16 CRED_SPECIAL Credit special
 17 SEC_DROP Security level to drop to at 0 credits

This group of constants can be used to access or modify user account information
using the ACCOUNT() function, ACCOUNT statement and/or RECORDUSAGE. The
ACCOUNT() function returns the current value and the ACCOUNT statement is used to
modify a value. Record usage also modifies a value with more information stored in a
usage file.
 See also : Account RecordUsage

 ACCOUNT(INTEGER field)
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
 ACCOUNT INTEGER field, INTEGER value
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
1) the ACCOUNT() function
Returns amount of credits charged for services corresponding to the field parameter.
Example:
 println "You have been charged ",ACCOUNT(DEB_CHAT)," for chat"

field is the field number to access (1-14) or using DEB_ constants
See the Accounting section for a list of constants witch can be used with the
ACCOUNT() function.
The account function is used to retrieve account information from PCBoard. These are
the constants which can be used with the ACCOUNT() function.
2) The ACCOUNT Statement
field is a value between 0-14. Using system constants is reccomended. value is the
amount of credits to add or subtract to field the field
Example:
 ACCOUNT DEB_CHAT,10
The ACCOUNT statement is used to modify accounting information for a user. This
statement will simply modify a debit value whereas the RECORDUSAGE will do the
same thing as well as record information in the accounting file.
The valid constants for this statement are the same as those used for the ACCOUNT()
Function. See the Accounting section for a list of those consts
 See also : Accounting RecordUsage

 RECORDUSAGE ...
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Usage : RECORDUSAGE INTEGER field,STRING desc1,STRING desc2,DWORD
unitcost,INTEGER value
Example:
 RECORDUSAGE DEB_CHAT,"Debit for chat", "Using PPE",10,10
field is the field number to access (using DEB_... consts) descr1 is the descripttion of
the charge descr2 is a subdescription of the charge unitcost is the cost per unit value
is the number of units
Recordusage will update debit values in PCBoard as well as record descriptions and
other information in an accounting file.
Valid values for the field parameter are 2-16. The constants corresponding with these
values (DEB_???) could and should be used here. (see the Accounting section for a
list of consts)
 See also : Accounting Account PCBAccount PcbAccStat

 PCBACCOUNT(INTEGER field)
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns what PCBoard will charge a user for a certain activity. These are values the
SysOp assigns in PCBsetup when accounting is configures and enabled.
Example: C
 println "You will be charged ",PCBACCOUNT(CHRG_CHAT)," for chat"

Valid values for the field paramter are 0-14. Use of the corresponding constants is
encouraged. (see the Accounting section)
 See also : Accounting Account RecordUsage PcbAccStat

 PCBACCSTAT(INTEGER field)
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns value in status field
Example:
 PRINTLN "Mutiplier for credits is ",PCBACCSTAT(ACC_STAT)
This function can and should be used in conjunction with the ACC_??? constants as
the field parameter. Valid values for field are 0-3. (see the Accounting section)
 See also : Accounting Account RecordUsage RecordUsage

 MESSAGE HEADER FIELD ACCESS CONSTANTS
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

 Field Value hex dec Field Description

 HDR_ACTIVE 0x0E 14Message active flag field
 HDR_BLOCKS 0x04 4Number of 128 byte blocks in message
 HDR_DATE 0x05 5Date message was written
 HDR_ECHO 0x0F 15Echoed message flag
 HDR_FROM 0x0B 11Who the message is from
 HDR_MSGNUM 0x02 2Message number
 HDR_MSGREF 0x03 3Reference message
 HDR_PWD0x0D 13Message password
 HDR_REPLY 0x0A 10Message reply flag
 HDR_RPLYDATE0x08 8Reply message date
 HDR_RPLYTIME0x09 9Reply message time
 HDR_STATUS 0x01 1Message status
 HDR_SUBJ 0x0C 12Message subject

 HDR_TIME 0x06 6Message time
 HDR_TO 0x07 7Who the message is to.

These constants are for use with SCANMSGHDR(conf_num,start_msg,field,text) in the
FIELD parameter.
 See also : ScanMsgHdr

 SCANMSGHDR(conf,start_msg,field,test)
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns the first message number in the message base which matches the search
criteria.
Example:
 integer msgno
 msgno = SCANMSGHDR(0,1,HDR_TO,"Stan")
This function can be used to scan PCBoard message bases for certain information. All
fields in the standard header can be searched. There are 15 fields in the standard
header. Valid values for field are 1-15. See the list of constants related to this
function.
 See also : MsgToFile Message Header Constats

 MSGTOFILE conf,msg_no,filename
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Writes a message into a file.
Example:
 ;Using SCANMSGHDR to search for a message
 MSGTOFILE 0,200,"d:\msg1.txt"
 DISPFILE "D:\msg1.txt",DEFS
This statement will take the given message and write it to a text file. The file's first 15
lines will contain standard header information. (One field per line) The headers are
formatted to make parsing easier. The 16th line will state how many extended
headers are present. The following line(s) will contain extended headers. (one per
line) Finally, after the extended headers, will be a line containing "Message body:".
Everything after that is the body of the message. 3
 See also : ScanMsgHdr, DispFile, HDR_... Consts

 QWKLIMITS field,limit
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

 QWKLIMITS(field)
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
1) The QWKLIMITS Statement
This statement allows the PPL programmer to modify a users QWK limits. Four fields
can be modified with their statement.
Important note. You *must* use GET USER AND PUTUSER with these QWK functions.

Example:
 GETUSER
 QWKLIMITS MAXMSGS,500
 PUTUSER

- Max Messages: Maximum messages allowed in a qwk packet
Note: If you specify a number higher than that contained in PCBSETUP the values in
PCBSETUP will be used.

- Max Messages per Conference: Maximum messages allowed in a qwk packet per
conference.
Note: If you specify a number higher than that contained in PCBSETUP the values in
PCBSETUP will be used.
- Personal Attach Limit: Maximum number of bytes in attached files for the user.
- Public Attach Limit: Maximum number of bytes in attached files for the user.

Four constants have been defined to identify the FIELD value.
 Constant ValueField
 MAXMSGS 0 Max messages per qwk packet
 CMAXMSGS 1 Max Messages per conference
 ATTACH_LIM_U 2 Personal attach bytes limit
 ATTACH_LIM_P 3 Public attach bytes limit

2) The QWKLIMITS() function
This functions returns the values contained in the users QWK configuration. The same
constants used in the QWKLIMITS statements can be used with the field parameter.
Example:
 GETUSER
 PRINTLN QWKLIMITS(MAXMSGS)

 MESSAGE HEADER FIELD ACCESS CONSTANTS
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

 Field Value hex dec Field Description

 HDR_ACTIVE 0x0E 14Message active flag field
 HDR_BLOCKS 0x04 4Number of 128 byte blocks in message
 HDR_DATE 0x05 5Date message was written
 HDR_ECHO 0x0F 15Echoed message flag
 HDR_FROM 0x0B 11Who the message is from
 HDR_MSGNUM 0x02 2Message number

 HDR_MSGREF 0x03 3Reference message
 HDR_PWD0x0D 13Message password
 HDR_REPLY 0x0A 10Message reply flag
 HDR_RPLYDATE0x08 8Reply message date
 HDR_RPLYTIME0x09 9Reply message time
 HDR_STATUS 0x01 1Message status
 HDR_SUBJ 0x0C 12Message subject
 HDR_TIME 0x06 6Message time
 HDR_TO 0x07 7Who the message is to.

These constants are for use with SCANMSGHDR(conf_num,start_msg,field,text) in the
FIELD parameter.

 SCANMSGHDR(conf,start_msg,field,test)
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Returns the first message number in the message base which matches the search
criteria.

Example:
integer msgno msgno = SCANMSGHDR(0,1,HDR_TO,"Stan")
This function can be used to scan PCBoard message bases for certain information. All
fields in the standard header can be searched. There are 15 fields in the standard
header. Valid values for field are 1-15. See the list of constants related to this
function.
 See also : MsgToFile

 MSGTOFILE conf,msg_no,filename
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Writes a message into a file.
Example:
;Using SCANMSGHDR to search for a message MSGTOFILE 0,200,"d:\msg1.txt"
DISPFILE "D:\msg1.txt",DEFS
This statement will take the given message and write it to a text file. The file's first
15 lines will contain standard header information. (One field per line) The headers
are formatted to make parsing easier. The 16th line will state how many extended
headers are present. The following line(s) will contain extended headers. (one per
line) Finally, after the extended headers, will be a line containing "Message body:".
Everything after that is the body of the message.
 See also : ScanMsgHdr, DispFile, HDR_... Consts

 QWKLIMITS field,limit
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
 QWKLIMITS(field)
 ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
1) The QWKLIMITS Statement
This statement allows the PPL programmer to modify a users QWK limits. Four fields
can be modified with their statement.
Important note. You *must* use GET USER AND PUTUSER with these QWK functions.

Example:
GETUSER QWKLIMITS MAXMSGS,500 PUTUSER

- Max Messages: Maximum messages allowed in a qwk packet

* Note: If you specify a number higher than that contained in PCBSETUP the values in
PCBSETUP will be used.

- Max Messages per Conference: Maximum messages allowed in a qwk packet per
conference.
* Note: If you specify a number higher than that contained in PCBSETUP the values in
PCBSETUP will be used.

- Personal Attach Limit: Maximum number of bytes in attached files for the user.
- Public Attach Limit: Maximum number of bytes in attached files for the user.

Four constants have been defined to identify the FIELD value.
 Constant ValueField
 MAXMSGS 0 Max messages per qwk packet
 CMAXMSGS 1 Max Messages per conference
 ATTACH_LIM_U 2 Personal attach bytes limit
 ATTACH_LIM_P 3 Public attach bytes limit

2) The QWKLIMITS() function
This functions returns the values contained in the users QWK configuration. The same
constants used in the QWKLIMITS statements can be used with the field parameter.
Example: GETUSER PRINTLN QWKLIMITS(MAXMSGS)

