MPL Training
Lesson 18
Black Panther

Wow! I can’t believe we’re already on lesson 18. I hope these are benefiting all of you, and helping you
to understand how MPL works.

In this lesson, we’re going to take a closer look at some of the specific functions available with Mystic
and can be used in MPL programs. These will deal more with either obtaining information to use in
your MPL, or ways to write information to the screen.

MCI2STR (String): String

This function will take any of the MCI codes within Mystic, and return the string containing the
information. For example:

Var BBSName : String

BBSName:=MCI2Str(‘BN’)
WriteLn(‘The name of the BBS is ‘“+BBSName)

Or, you could shorten it up, and write:

WriteLn(‘The name of the BBS is ‘“+MCI2Str(‘BN”))

MCILength(String): Integer
This function will try to return the length of a string without counting the MCI codes.
Var B: Byte

B:=MCILength(‘|15Hello|UH”)
WriteLn(‘Length should be 5: ‘+Int2Str(B))

ReadKey: Char

This function will read a single key from the user. It is also useful when you wish to have a pause in
your MPL program, without having an actual pause prompt. It will wait for the user to hit a key.

Var Ch : Char
Repeat
Ch:=ReadKey
Until Keypressed
WriteLn(“You entered: ‘+Ch)

This example will wait for the user to hit a key, and then tell the user which key they hit on their
keyboard.

If you wanted to use this as a pause, you could just put:
ReadKey

When the program got to this line, it would wait for the user to hit a key before proceeding.

StuffKey(S: String)

This procedure can be handy if you want to put text into the buffer for the user. A good example of this,
is my Scrollz animated message banner. It will run until the user hits a key. I then use the StuffKey to
put this into the buffer that is passed back to Mystic. This way, Mystic is able to act on whatever key
was pressed.

Repeat

Until Keypressed
Ch:=ReadKey
StuffKey(Ch)
Halt

What this is doing, is running the Repeat/Until loop until the user hits a key. At that point, it will save
the keystroke into Ch, and then stuffs that keystroke into the buffer, and exits. When Mystic takes
control back from the MPL, it will open the menu, or command associated with that keystroke.

WhereX: Byte
WhereY: Byte

These are both very useful, if you want your MPL program to know where the cursor is located on the
screen. I’ve used these to find out if a header file was displayed or not in some of my MPLs.

Var
X : Byte
Y : Byte

X:=WhereX
Y:=WhereY

WriteLn(“Your cursor is located at ‘+Int2Str(X)+’,”+Int2Str(Y))

In my MPLs, I’ll check where the Y position is. If it’s not showing ‘1’, then I know a header file has
been displayed. Also, in my pause prompts, I can check to see if the X coordinate is at 1. If it’s not, I
can send a carriage return to the screen, so the cursor is at the next line down, and at X coordinate of
(3 1 b .

Write(Text)

This procedure is used to write information to the screen. Write will NOT send a carriage return at the
end of the line. Sometimes this is what you need, but if you want the carriage return, use the WriteLn
procedure, which will be next.

Write(‘Hello)
Write(“World”)

This would display ‘Hello World’ on the screen.

WriteLn(‘Hello)
WriteLn(“World”)

Would display:
Hello
World

WriteRaw(Text)
WriteRawLn(Text)

These procedures will work basically the same as the Write and WriteL.n procedures, but will NOT
parse any pipe codes or MCI codes.

WriteRawLn(‘|11Hello there [UH”)
Would display:
|11Hello there |UH

on the screen.

WriteXY (X, Y, Z: Byte; Str: String)
Now, I’'m sure you’ve already seen the following lines in some MPLs.

GotoXY(1,15)
Write(‘This is fancy text displayed on the screen”)

This can actually be accomplished with one procedure.
WriteXY(1,15,11,’This is fancy text displayed on the screen’)
The X and Y are the coordinates to display the text.

The Z is the color code you would like the text displayed in. In the above example, it was displayed in
cyan. (11)

This function can be used any time you want to have text displayed in a particular position on the
screen. It cannot, however, parse any MCI codes. So if you have |15 to display in white in the text, it
will display the |15 on the screen.

WriteXYPipe(X, Y, Z: Byte; Len: Integer; Str: String)

This procedure is similar to WriteXY, but will allow you to tell it the length of the text, and it will pad
the output to fit that space.

WriteXYPipe(1, 10, 8, 50, ‘This pads to 50 chars at location 1, 10°)

CHR(B: Byte): Char

This function can be useful in obtaining information from the user. It will take the ASCII code number,
and change it to the actual character.

WriteLn(‘Hello’+Chr(32)+’World”)

This will actually output:

Hello World

This is because ASCII 32 is the number for a space. This function can handle all 255 characters within
the ASCII character set.

ORD(C: Char): Byte

This is pretty much the opposite of the CHR function, as this will change a character into it’s ASCII
character code.

WriteLn(Ord(‘ 9))

This will display ‘32, as that’s the ASCII code for a space.

Copy(S: String, Index: Byte, Count: Byte): String

Have you had a string in a program, where you only want to work with one part of that string? Let’s say
you have:

Str:="Hello World’

You only want to know what the first 5 characters are of that string.

WriteLn(Copy(Str, 1, 5))

This would display Hello to the screen. You could also copy this into a different string variable as well.
Str1:=Copy(Str, 1, 5)

Now, Str would contain ‘Hello World’ and Strl would contain ‘Hello’.

The Index is where you would like it to start copying from, and the Count is how many characters you
want it to copy.

Delete(S: String, Index: Byte, Count: Byte)

This is actually similar to the Copy procedure, but will actually delete the text from the current string.
Str:="Hello World’

Delete(Str, 6, 6)

WriteLn(Str)

This would give you ‘Hello’ printed to the screen. It starts from the Index character position, and
removes Count number of characters.

Insert(Source: String, Target: String, Index: Byte)

Now that we’ve removed text from a string variable, let’s see how we can insert text into the string
variaible.

Source is the text you would like to insert into another string.
Target is the string you want the text inserted into.

Index is where you would like it inserted.

Str : String="RCS Team’

Insert(‘Development °, Str, 5)

WriteLn(Str)

This would display ‘RCS Development Team’ on the screen.

Replace(Str1, Str2, Str3: String): String

We’ve talked about inserting text into a string, and deleting text in a string. Now we’ll get crazy, and
talk about how to replace text in a string. :)

This function will replace ALL occurrences of the text you indicate, with the text you want it to be.
Strl is the given text string you are working with.
Str2 is the text you want to replace within Strl

Str3 is what you want to replace Str2 with

Var Str : String="Hello Hello Hello’
Str:=Replace(Str, ‘Hello’, “World”)

At this point, Str would contain the text “World World World’.

Int2Str(L: Integer): String
You will see this function used a lot in WriteLn statements. What this function does, is convert, or
typecast, an integer variable into a string. This is necessary when using WriteLn, as it can only write

strings. So, whenever you want to display a byte, integer, longint, etc, it will need to be typecast.

WriteLn(‘I see that your age is ‘+Int2Str(age))

Str2Int(S: String): Integer

This is one that can be very useful, but can also cause people a lot of issues. What it does, is take a
string, and will attempt to convert it (typecast) as an integer.

Var
Str: String="29’
Age: Byte

Age:=Str2Int(Str)
WriteLn(Age)

This would output ‘29’ on the screen.
The reason this one causes issues for some people, is the string has to be checked beforehand, to make

sure the string does contain a valid integer. If you have a string variable that contains ‘AGE29’, and
you try to run Str2Int on it, it will crash your program, as it contains characters that are not numeric.

One more, we’ll call this one a bonus. :)

StrComma(gold: Longlnt): String

This function will take an integer, and return a string that contains commas as the thousand separators.
WriteLn(StrComma(1000000))

This would output 1,000,000 on the user display. It’s much easier to read, than trying to count the
number of zeros. ;)

This should give you a better understanding of obtaining input from the user, and displaying
information to the display. While this is usually only a small part of the code that we write, it is also the
areas that can take the longest to write. We focus so much on how things look to the user, and make
sure we are getting the right information from the users, that it can be the most important parts of our
programs. After all, the input and output are the only things the user has to judge our programs. Most of
the time, they won’t look at everything else that is happening in our code, in the background.

