
MPL Training
Lesson 15
Black Panther

Some Program Setup

-=-=-=-=-=-=-=-=-

This is something I probably should have gone over in an earlier lesson, but to be honest with you, I 
didn’t think about it. It’s become second nature for me.

When writing an MPL program, or a lot of other programming languages which follow the same rules, 
there is a need to have things in a particular order. For example, the first think the MPL compiler will 
look for in your code, is the ‘Uses’ statement. It needs to know what information needs to be ‘included’ 
with your program. If you will be working with user information, you will need to add ‘Users’, etc. 
We’ve already covered that.

The next thing the compiler looks for, is any ‘Types’ you will have. These are going to be any records 
you will be using. There are some other types of types, but you probably won’t need to worry about 
those yet. I’m not even sure if the MPL compiler supports them…

Then you will have any global variables for your program. Just a reminder, keep these to a minimum, 
as most variables are only needed for one, maybe two, procedures/functions in your program. If that’s 
the case, keep them local.

It’s after this where things can get a bit tricky. I’ll try to explain this as best I can. If you have any 
questions about this, please ask.

First of all, we all know the, usually, small procedure at the bottom of the code. It’s the one that doesn’t
have either procedure or function listed, or a name. This is referred to as your ‘Main’ procedure. This is
important to know, as there may be a test later. :) Just kidding, I wouldn’t do that to you. But, this is the
most important procedure in your program. We’ll find you why as we go through this lesson.

When your program is compiling, it will read everything starting from the beginning, top, of your code.
If, while it’s compiling, it finds a call to a procedure that it hasn’t seen yet, it will give you an error.

Here is a snippet of code to give you an example:



Remember this program? If you notice the procedure at the bottom does not have the word ‘Procedure’,
‘Function’, or a name listed. It just has a ‘Begin’ and ‘End’. That is your Main procedure. 

Our compiler will read everything until it gets to this procedure, and then start putting your program 
together. Of course this is overly simplified, as the compiler really is doing a lot more than that, but 
once it gets to the Main procedure, it does not expect to find anything else afterwords. The Main 
procedure NEEDS to be at the bottom of your code.

Now, you’ll notice there are other functions in this program. Let me change the code a little, and we’ll 
see what happens.



Alright, what I did is added another function to the top of the code, that will take the two numbers, add 
them together, then subtract those two numbers, and multiply them together. I know, not a well needed 
function, as I don’t know why you would want to do that, but it works for this example.

The question is, will this code compile?



Uh oh… What does that mean? ‘Unknown identifier: addnumbers’?

Well, if you notice the ‘addnumbers’ function is below our new ‘addandsubtract’ function. While the 
compiler was reading our code, it noticed the call to the ‘addnumbers’ function, but it hadn’t seen 
anything about that function in our code yet.

For this reason, we need to be very careful which order we put out procedures and functions in our 
code. In order for this to compile, we would need to move our new ‘addandsubtract’ function so it is 
below both the ‘addnumbers’ and the ‘subtractnumbers’ functions.

There we go. Now our new function is listed underneath the other two. It should compile now.



That looks better. 

In most of the MPL programs that we will be working on, this won’t be a huge issue. If you look at a 
large program, where some functions are used many times, and are also dependent on other functions, 
it can be a pain. 

I’ll reference my TDTA MPL game that I wrote awhile back. There are a lot of functions that are used 
throughout the game, and are needed at different times. Something like the function which writes data 
to a log file for example. These functions/procedures need to be near the top of the code, so they are 
listed before any calls to that function/procedure. 

In summary, if you start reading your code from the top, you should always find the functions and 
procedures listed before any calls to them. There are ways around this in Pascal, but I’m not sure if 
those have been implemented in the MPL compiler, so I’m not even going to mention them here.

I stated earlier this is something that also happens in other languages. I know that in C and C++ this is 
also the case. Again, there are ways around it, but it still needs to be in the forefront of your mind as 
your typing in your code.

As this is something that I struggled with early on, I wanted to share some explanation as to how things
should be set up, and why. I hope I explained this so you could understand it. It’s one of those things 
that is easy to understand, but can be difficult to explain… Let me know if you have any questions.


