
MPL Training
Lesson 12
Black Panther

Mystic BBS Related Functions

-=-=-=-=-=-=-=-=-

Let’s take a look at some of the Mystic BBS specific functions that are available for use in MPL 
programs. 

-=-=-=-=-=-=-=-=-

ACS (S: String) : Boolean

This function will check a users ACS levels. If you want to make sure the user is at least security level 
20 and is over age 18, this function can be used to check it.

If ACS(‘s20a18’) Then

-=-=-=-=-=-=-=-=-

CheckPw(PW: String) : Boolean

This function will check the supplied password against what is saved in the users record.

-=-=-=-=-=-=-=-=-

SetPw(PW: String)

This function will let the MPL set or change the users password.

-=-=-=-=-=-=-=-=-

ValidPW(PW: String): Byte

This will check to make sure the user supplied password is compliant with the current password policy 
set by the Sysop. This function will return a result depending on the status:

    1 – Password does not meet min length



    2 – Password does not meet min cap letters
    3 – Password does not meet min symbols
    4 – Password does not meet min numbers

-=-=-=-=-=-=-=-=-

DispFile(FN:String)

This is the function that is used to display any files to the user in your MPL program. When using this 
function, do not supply the file extension, as Mystic will display the one appropriate to the callers 
graphic settings. 

DispFile(‘main’)

Mystic will send the ‘main.ans’ file if the user has ansi enabled on their call. Otherwise, it will look for 
‘main.asc’ if the are connected via an ascii terminal.

-=-=-=-=-=-=-=-=-

FillChar(R:Record;S:Integer;V:Value)

This function will fill a record with whichever character you provide. This way, if there is a call to that 
records variables, it won’t display random characters on the screen. 

Type
  MyUserRecord = Record
  UserName   : String[30]
  SomeValue  : Array[1..5] of Byte
End
Var
  u : MyUserRecord
Begin
  FillChar(u, sizeof(u), #0)
End

-=-=-=-=-=-=-=-=-

GetCfg

This function will load the current Mystic configuration data, so you will be able to access many of the 
paths. In the beginning of your code, include the ‘Uses CFG’.

CfgSysPath System Path
CfgDataPath Data Path
CfgMsgPath Message Base Path
CfgProtPath Protocol Path
CfgQWKPath Local QWK Path
CfgMPEPath Script (MPL) Path
CfgAttPath File Attach Path



CfgLogsPath System Logs Path
CfgTextPath Text Files Path (User Theme)
CfgTempPath Temp Path for Current Node
CfgMenuPath Menu Files Path (User Theme)
CfgTimeOut System Timeout
CfgSeeInvis Give the ‘See Invisible’ ACS Value
CfgTNNodes Number of Max Telnet Nodes to Allow
CfgNetDesc[1..30] Gives Network Descriptions
CfgDefTheme Returns Configured Default Theme
CfgTextFB Returns Theme’s Text Fallback Theme
CfgScriptFB Returns Theme’s Scrip Fallback Theme
CfgFallback Returns T/F if Theme’s Fallback is Enabled

Uses
  CFG
GetCfg
WriteLn(‘Mystic BBS is installed in ‘+CfgSysPath)

-=-=-=-=-=-=-=-=-

GetAttrXY(X, Y : Byte): Byte

The GetAttrXY function will return the attributes of the character at the X,Y position indicated. The 
attributes would consist of the MCI codes active at those coordinates.

Var
  Attr : Byte
Attr := GetAttrXY(1,1)
WriteLn(‘The attribute of the character at 1,1 is: ‘+Int2Str(Attr))

-=-=-=-=-=-=-=-=-

GetCharXY(X, Y : Byte): Char

This function will get the character at the given X,Y location on the user’s screen.

Var
  Ch : Char
Ch:=GetCharXY(1,1)
WriteLn(‘The user has the following character at 1,1: ‘+Ch)

-=-=-=-=-=-=-=-=-

GetPrompt(N: Word):String

This function will return the given prompt within the users theme. So, if you’d like to utilize the Mystic
prompts within your MPL program, you could use this function.

WriteLn(GetPrompt(1))



This example would display prompt #1 within the users current theme.

-=-=-=-=-=-=-=-=-

GetScreenInfo(I, X, Y, Attr: Integer)

This is a very powerful function that will allow you and your MPL program to utilize files such as 
templates within Mystic. It will read the MCI codes, such as |!1 and |!2, and allow you to use those for 
placing text on the screen. A good example of this, is the Message Editor ansi file.

Var
  X, Y, Attr : Byte
Begin
  GetScreenInfo(1, X, Y, Attr)
  WriteLn(‘The value of the !1 MCI code was:’)
  WriteLn(‘     X: ‘+Int2Str(X))
  WriteLn(‘     Y: ‘+Int2Str(Y))
  WriteLn(‘ Attr: ‘+Int2Str(Attr))
End

-=-=-=-=-=-=-=-=-

GetUser(N: Integer): Boolean

If you wanted to get information about other users on the BBS, you could use this function to obtain the
following.

UserDeleted Boolean Is the user marked for deletion?
UserName String User’s real name
UserAlias String User’s BBS alias
UserPassword String User’s Password (Not sure if this is still availble)
UserAddress String User’s Street Address
UserCity String User’s City/State
UserBirthday String User’s Birth Date
UserSex Char User’s Gender
UserSec Byte User’s Security Level
UserFirstOn LongInt User’s Date/Time of first call (Packed Date Format)
UserLastOn LongInt User’s Date/Time of last call (Packed Date Format)
UserPosts Integer? Number of posts user has made
UserDL Integer? Number of downloads user has made
UserUL Integer? Number of uploads user has made

(Not certain on the variable type for the last three, as they were not indicated in the what’s new file)

Var
  A : Integer
Begin
  A:=1



  While GetUser(A) Do
  Begin
    WriteLn(‘User Alias: ‘+ UserAlias)
    A:=A+1
  End
End

-=-=-=-=-=-=-=-=-

GetThisUser

If you want to have the current user’s information available in your MPL program, you will need to run
this early in your program. This will obtain the ‘USER’ information listed above for the user currently 
logged in

Begin
  GetThisUser
  WriteLn(‘Welcome to the BBS, ‘+UserAlias)
  WriteLn(‘You have called ‘+UserCalls+’ times!’)

-=-=-=-=-=-=-=-=-

Graphics:Byte

This function will return the current user’s graphics mode. It will be either a 0 or 1.

0 = ASCII graphics
1 = ANSI graphics

If Graphics = 1 Then
  WriteLn(‘ANSI’)
Else
  WriteLn(‘ASCII’)

-=-=-=-=-=-=-=-=-

HangUp

This will exit your MPL program, and Mystic will disconnect the user from the BBS. 

If InputYN(‘Do you wish to hangup now? ‘) Then
  HangUp

-=-=-=-=-=-=-=-=-

Local:Boolean

This function will return ‘True’ if the caller is logged on locally, and ‘False’ if they are a remote caller.



If Local Then
  WriteLn(‘Local caller’)
Else
  WriteLn(‘Remote caller’)

-=-=-=-=-=-=-=-=-

MenuCmd(CM: String, Data: String)

This is very handy if you want your MPL program to run a Mystic command. The ‘CM’ variable is the 
command, and the ‘Data’ is any data the command needs to in order to run.

MenuCmd(‘NW’,’’)

This would run the Mystic command ‘NW’, which is the Who’s Online command. As this command 
does not require any additional data, the field if null.

-=-=-=-=-=-=-=-=-

NodeNum:Byte

This function will return the current user’s node number they are on. 

WriteLn(‘You are currently on node: ‘+NodeNum)

-=-=-=-=-=-=-=-=-

SysopLog(S: String)

This is very handy for having your MPL program keep a log of what the user does within your MPL. It 
will write the information into the NODEx.LOG file that Mystic keeps. It will automatically insert the 
date and time in the correct format, so you just need to enter the string you would like to have in the log
file.

SysopLog(UserAlias+’: just entered my awesome MPL program!’)

-=-=-=-=-=-=-=-=-

I know this lesson got a bit longer than previous, but I wanted to cover most of the Mystic related 
functions in one lesson. There are a few others that will be covered in a later lesson, as I feel they are 
more in-depth, and need more time spent on those.


